首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   16篇
  国内免费   2篇
电工技术   2篇
化学工业   190篇
金属工艺   6篇
机械仪表   3篇
建筑科学   1篇
能源动力   5篇
轻工业   4篇
水利工程   1篇
石油天然气   2篇
无线电   15篇
一般工业技术   24篇
冶金工业   3篇
自动化技术   16篇
  2024年   1篇
  2023年   5篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2018年   8篇
  2017年   17篇
  2016年   25篇
  2015年   22篇
  2014年   20篇
  2013年   24篇
  2012年   27篇
  2011年   20篇
  2010年   7篇
  2009年   8篇
  2008年   10篇
  2007年   7篇
  2006年   12篇
  2005年   5篇
  2004年   10篇
  2003年   5篇
  2002年   4篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1986年   1篇
排序方式: 共有272条查询结果,搜索用时 968 毫秒
1.
Biodiesel was prepared from waste cooking oil combined with methanol. The process was performed via transesterification in a microreactor using kettle limescale as a heterogeneous catalyst and various cosolvents under different conditions. n‐Hexane and tetrahydrofuran were selected as cosolvents to investigate fatty acid methyl esters (FAMEs). To optimize the reaction conditions, the main parameters affecting FAME% including reaction temperature, catalyst concentration, oil‐to‐methanol volumetric ratio, and cosolvent‐to‐methanol volumetric ratio were studied via response surface methodology. Under optimal reaction conditions and in the presence of the cosolvents n‐hexane and tetrahydrofuran, high FAME purities were achieved. Considering the experimental results, the limescale catalyst is a unique material, and the cosolvent method can reduce significantly the reaction time and biodiesel production cost.  相似文献   
2.
4‐(4‐dimethylaminophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( DAPTD ) was prepared from 4‐dimethylaminobenzoic acid in five steps. The compound DAPTD was reacted with excess acetyl chloride in N,N‐dimethylacetamide (DMAc) solution and gave 1,2‐bisacetyl‐4‐[4‐(dimethylaminophenyl)]‐1,2,4‐triazolidine‐3,5‐dione as a model compound. Solution polycondensation reactions of monomer with succinyl chloride (SucC), suberoyl chloride (SubC), and sebacoyl chloride (SebC) were performed under conventional solution polymerization techniques in the presence of triethylamine and pyridine as a catalyst in N‐methylpyrrolidone (NMP) and led to the formation of novel aliphatic polyamides. These novel polyamides have inherent viscosities in the range of 0.09–0.21 dL/g in N,N‐dimethylformamide (DMF) at 25°C. Fluorimetric studies of the model compound as well as polymers were performed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 947–954, 2007  相似文献   
3.
N‐trimellitylimido‐L ‐methionine ( 3 ) was prepared by reaction of trimellitic anhydride ( 1 ) with ‐L ‐methionine ( 2 ) in acetic acid solution at refluxing temperature. This diacid was reacted with thionyl chloride, and N‐trimellitylimido‐L ‐methionine diacid chloride ( 4 ) was obtained in quantitative yield. The resulting diacid chloride was reacted with p‐aminobenzoic acid in dry acetone and bis(p‐aminobenzoic acid)‐N‐trimellitylimido‐L ‐methionine ( 5 ) was obtained as a novel optically active amide–imide diacid monomer in high yield. The direct polycondensation of amide–imide diacid monomer 5 with several aromatic diamines was carried out with tosyl chloride (TsCl)/pyridine (Py)/dimetheylformamide (DMF) system. The resulting thermally stable poly(amide–imide)s (PAIs) were obtained in good yields and inherent viscosities ranging between 0.24 and 0.46 dL g?1 and were characterized with FTIR, 1H NMR, CHN, and TGA techniques. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1248–1254, 2007  相似文献   
4.
Summary 4-(4-Dimethylaminophenyl)-1,2,4-triazolidine-3,5-dione (DAPTD) was prepared from 4-dimethylaminobenzoic acid in five steps. The reaction of monomer DAPTD with n-isopropylisocyanate was performed at room temperature in N,N-dimethylacetamide (DMAc) solution and the resulting bis-urea derivative was obtained in high yield and was finally used as a model compound for polymerization reaction. The step-growth polymerization reactions of monomer with hexamethylene diisocyanate (HMDI), isophorone diisocyanate (IPDI) and toluene-2,4-diisocyanate (TDI) were performed in DMAc solution in the presence of pyridine, triethylamine or dibutyltin dilurate as catalysts. Some physical properties and structural characterization of these novel polyureas are reported. Fluorimetric studies of the model compound as well as polymers were performed.  相似文献   
5.
This survey investigates multipath routing protocols for mobile ad hoc networks (MANETs). The main objectives of multipath routing protocols are to provide reliable communication and to ensure load balancing as well as to improve quality of service (QoS) of MANETs. These multipath protocols are broadly classified into five categories based on their major goals. The goals are to improve delay, provide reliability, reduce overhead, maximize network life and support hybrid routing. Multipath routing protocols address issues such as multiple paths discovery and maintaining these paths. Issues, objectives, performances, advantages and disadvantages of these protocols are investigated and summarized. A checklist is provided as a guideline so that a network designer can choose an appropriate multipath routing protocol to meet the network's application objectives.  相似文献   
6.
Characterizing 3D vegetation structure from space: Mission requirements   总被引:1,自引:0,他引:1  
Human and natural forces are rapidly modifying the global distribution and structure of terrestrial ecosystems on which all of life depends, altering the global carbon cycle, affecting our climate now and for the foreseeable future, causing steep reductions in species diversity, and endangering Earth's sustainability.To understand changes and trends in terrestrial ecosystems and their functioning as carbon sources and sinks, and to characterize the impact of their changes on climate, habitat and biodiversity, new space assets are urgently needed to produce high spatial resolution global maps of the three-dimensional (3D) structure of vegetation, its biomass above ground, the carbon stored within and the implications for atmospheric green house gas concentrations and climate. These needs were articulated in a 2007 National Research Council (NRC) report (NRC, 2007) recommending a new satellite mission, DESDynI, carrying an L-band Polarized Synthetic Aperture Radar (Pol-SAR) and a multi-beam lidar (Light RAnging And Detection) operating at 1064 nm. The objectives of this paper are to articulate the importance of these new, multi-year, 3D vegetation structure and biomass measurements, to briefly review the feasibility of radar and lidar remote sensing technology to meet these requirements, to define the data products and measurement requirements, and to consider implications of mission durations. The paper addresses these objectives by synthesizing research results and other input from a broad community of terrestrial ecology, carbon cycle, and remote sensing scientists and working groups. We conclude that:
(1)
Current global biomass and 3-D vegetation structure information is unsuitable for both science and management and policy. The only existing global datasets of biomass are approximations based on combining land cover type and representative carbon values, instead of measurements of actual biomass. Current measurement attempts based on radar and multispectral data have low explanatory power outside low biomass areas. There is no current capability for repeatable disturbance and regrowth estimates.
(2)
The science and policy needs for information on vegetation 3D structure can be successfully addressed by a mission capable of producing (i) a first global inventory of forest biomass with a spatial resolution 1 km or finer and unprecedented accuracy (ii) annual global disturbance maps at a spatial resolution of 1 ha with subsequent biomass accumulation rates at resolutions of 1 km or finer, and (iii) transects of vertical and horizontal forest structure with 30 m along-transect measurements globally at 25 m spatial resolution, essential for habitat characterization.
We also show from the literature that lidar profile samples together with wall-to-wall L-band quad-pol-SAR imagery and ecosystem dynamics models can work together to satisfy these vegetation 3D structure and biomass measurement requirements. Finally we argue that the technology readiness levels of combined pol-SAR and lidar instruments are adequate for space flight. Remaining to be worked out, are the particulars of a lidar/pol-SAR mission design that is feasible and at a minimum satisfies the information and measurement requirement articulated herein.  相似文献   
7.
Sintering shrinkage of prior cold compacted iron rings with different geometry (height to wall thickness ratio) and green density in the 6.5–7.3?g/cm3 range was investigated. It displays a minimum at an intermediate green density. Axial, tangential and radial shrinkages are different, due to the gradients of green density along the axial and the radial directions. Therefore, the effect of height on shrinkage and its anisotropy is the result of their effect on the stress distribution in the green parts during cold compaction, and the resulting green density and deformation experienced by the powder. Anisotropy decreases on increasing shrinkage.  相似文献   
8.
Alpha manganese dioxide nanorods (α-MnO2) were successfully functionalized with stearic acid (SA) by solvothermal method to prevent agglomeration. The α-MnO2-SA nanorods were employed as a filler for the preparation of poly(vinyl chloride) (PVC) nanocomposite (NC) films with different percentages (1, 3 and 5 wt%). The morphology, mechanical and thermal properties of the obtained NCs were investigated. The results showed that α-MnO2-SA can effectively improve the properties of PVC. The enhancement in properties of the NCs was attributed to the improved interfacial bonding by modification. Also, these NCs were used as adsorbent for removal of cadmium ions. Our finding suggests that the PVC/α-MnO2-SA NCs are good candidates for efficient Cd(??) removal from the wastewater.  相似文献   
9.
The ultrasonically assisted preparation and characterization of poly(amide‐imide) (PAI) composites containing functionalized multi‐walled carbon nanotubes (MWCNTs) are reported. To improve the dispersion in and compatibility with the polymer matrix, the MWCNTs were surface‐modified with p‐aminophenol (p‐AP) under microwave irradiation. The process is fast, one‐pot, easy and results in a high degree of functionalization as well as dispersibility in organic solvents. The p‐AP‐functionalized MWCNTs (MWCNTs‐AP) were analysed by means of field emission and transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction and thermogravimetric analysis (TGA). The results consistently confirm the formation of p‐AP functionalities on MWCNTs which are able to undergo additional reactions, while the structure of the MWCNTs remains relatively intact. MWCNTs‐AP/PAI hybrid films were prepared with various MWCNTs‐AP contents (5–15 wt%) using a solution‐casting technique. Microscopic observations show that the dispersion of the MWCNTs‐AP is improved as a result of the organic groups on the MWCNT surface and functional groups in the PAI structure. The properties of the obtained composites were characterized extensively using the aforementioned techniques. TGA results show that the hybrid films exhibit a good thermal stability. Tensile mechanical testing was performed for the prepared composites, the results of which indicate an increase in the elastic modulus and tensile strength with increasing MWCNTs‐AP content. © 2013 Society of Chemical Industry  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号