首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
一般工业技术   3篇
  2012年   2篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices.  相似文献   
2.
Plasmonic clusters can support Fano resonances, where the line shape characteristics are controlled by cluster geometry. Here we show that clusters with a hemicircular central disk surrounded by a circular ring of closely spaced, coupled nanodisks yield Fano-like and non-Fano-like spectra for orthogonal incident polarization orientations. When this structure is incorporated into an uniquely broadband, liquid crystal device geometry, the entire Fano resonance spectrum can be switched on and off in a voltage-dependent manner. A reversible transition between the Fano-like and non-Fano-like spectra is induced by relatively low (~6 V) applied voltages, resulting in a complete on/off switching of the transparency window.  相似文献   
3.
Khatua S  Chang WS  Swanglap P  Olson J  Link S 《Nano letters》2011,11(9):3797-3802
Confining visible light to nanoscale dimensions has become possible with surface plasmons. Many plasmonic elements have already been realized. Nanorods, for example, function as efficient optical antennas. However, active control of the plasmonic response remains a roadblock for building optical analogues of electronic circuits. We present a new approach to modulate the polarized scattering intensities of individual gold nanorods by 100% using liquid crystals with applied voltages as low as 4 V. This novel effect is based on the transition from a homogeneous to a twisted nematic phase of the liquid crystal covering the nanorods. With our method it will be possible to actively control optical antennas as well as other plasmonic elements.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号