首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376942篇
  免费   4810篇
  国内免费   1185篇
电工技术   7185篇
综合类   265篇
化学工业   52590篇
金属工艺   14671篇
机械仪表   10922篇
建筑科学   8458篇
矿业工程   1940篇
能源动力   9345篇
轻工业   29518篇
水利工程   3761篇
石油天然气   6413篇
武器工业   14篇
无线电   47488篇
一般工业技术   73320篇
冶金工业   79552篇
原子能技术   8049篇
自动化技术   29446篇
  2021年   2740篇
  2019年   2746篇
  2018年   4475篇
  2017年   4525篇
  2016年   4720篇
  2015年   3152篇
  2014年   5421篇
  2013年   16155篇
  2012年   8940篇
  2011年   12436篇
  2010年   9991篇
  2009年   11454篇
  2008年   11884篇
  2007年   12070篇
  2006年   10578篇
  2005年   9914篇
  2004年   9682篇
  2003年   9433篇
  2002年   8950篇
  2001年   9445篇
  2000年   8906篇
  1999年   9637篇
  1998年   25761篇
  1997年   17600篇
  1996年   13673篇
  1995年   9997篇
  1994年   8885篇
  1993年   8658篇
  1992年   6239篇
  1991年   5958篇
  1990年   5766篇
  1989年   5669篇
  1988年   5299篇
  1987年   4402篇
  1986年   4368篇
  1985年   5057篇
  1984年   4593篇
  1983年   4220篇
  1982年   3820篇
  1981年   4061篇
  1980年   3653篇
  1979年   3621篇
  1978年   3612篇
  1977年   4198篇
  1976年   5696篇
  1975年   3111篇
  1974年   2984篇
  1973年   2940篇
  1972年   2454篇
  1971年   2144篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Garzan oil field is located at the south east of Turkey. It is a mature oil field and the reservoir is fractured carbonate reservoir. After producing about 1% original oil in place (OOIP) reservoir pressure started to decline. Waterflooding was started in order to support reservoir pressure and also to enhance oil production in 1960. Waterflooding improved the oil recovery but after years of flooding water breakthrough at the production wells was observed. This increased the water/oil ratio at the production wells. In order to enhance oil recovery again different techniques were investigated. Chemical enhanced oil recovery (EOR) methods are gaining attention all over the world for oil recovery. Surfactant injection is an effective way for interfacial tension (IFT) reduction and wettability reversal. In this study, 31 different types of chemicals were studied to specify the effects on oil production. This paper presents solubility of surfactants in brine, IFT and contact angle measurements, imbibition tests, and lastly core flooding experiments. Most of the chemicals were incompatible with Garzan formation water, which has high divalent ion concentration. In this case, the usage of 2-propanol as co-surfactant yielded successful results for stability of the selected chemical solutions. The results of the wettability test indicated that both tested cationic and anionic surfactants altered the wettability of the carbonate rock from oil-wet to intermediate-wet. The maximum oil recovery by imbibition test was reached when core was exposed 1-ethly ionic liquid after imbibition in formation water. Also, after core flooding test, it is concluded that considerable amount of oil can be recovered from Garzan reservoir by waterflooding alone if adverse effects of natural fractures could be eliminated.  相似文献   
3.
4.
In this study, dilute chemical bath deposition technique has been used to deposit CdZnS thin films on soda-lime glass substrates. The structural, morphological, optoelectronic properties of as-grown films have been investigated as a function of different Zn2+ precursor concentrations. The X-ray diffractogram of CdS thin-film reveals a peak corresponding to (002) plane with wurtzite structure, and the peak shift has been observed with the increase of the Zn2+ concentration upon formation of CdZnS thin film. From morphological studies, it has been revealed that the diluted chemical bath deposition technique provides homogeneous distribution of film on the substrate even at a lower concentration of Zn2+. Optical characterization has shown that the transparency of the film is influenced by Zn2+ concentration and when the Zn2+ concentration is varied from 0 M to 0.0256 M, bandgap values of resulting films range from 2.42 eV to 3.90 eV while. Furthermore, electrical properties have shown that with increasing zinc concentration the resistivity of the film increases. Finally, numerical simulation validates and suggests that CdZnS buffer layer with composition of 0.0032 M Zn2+ concentration would be a promising candidate in CIGS solar cell.  相似文献   
5.
While protein medications are promising for treatment of cancer and autoimmune diseases, challenges persist in terms of development and injection stability of high-concentration formulations. Here, the extensional flow properties of protein-excipient solutions are examined via dripping-onto-substrate extensional rheology, using a model ovalbumin (OVA) protein and biocompatible excipients polysorbate 20 (PS20) and 80 (PS80). Despite similar PS structures, differences in extensional flow are observed based on PS identity in two regimes: at moderate total concentrations where surface tension differences drive changes in extensional flow behavior, and at small PS:OVA ratios, which impact the onset of weakly elastic flow behavior. Undesirable elasticity is observed in ultra-concentrated formulations, independent of PS identity; higher PS contents are required to observe these effects than in analogous polymeric excipient solutions. These studies reveal novel extensional flow behaviors in protein-excipient solutions, and provide a straightforward methodology for assessing the extensional flow stability of new protein-excipient formulations.  相似文献   
6.
A set of novel hydrazone derivatives were synthesized and analyzed for their biological activities. The compounds were tested for their inhibitory effect on the phosphorylating activity of the protein kinase CK2, and their antioxidant activity was also determined in three commonly used assays. The hydrazones were evaluated for their radical scavenging against the DPPH, ABTS and peroxyl radicals. Several compounds have been identified as good antioxidants as well as potent protein kinase CK2 inhibitors. Most hydrazones containing a 4-N(CH3)2 residue or perfluorinated phenyl rings showed high activity in the radical-scavenging assays and possess nanomolar IC50 values in the kinase assays.  相似文献   
7.
To investigate the evolution of the structural and enhanced magnetic properties of GdMnO3 systems induced by the substitution of Mn with Cr, polycrystalline GdMn1-xCrxO3 samples were synthesized via solid-state reactions. XRD characterization shows that all GdMn1-xCrxO3 compounds with single-phase structures crystallize well and that Cr3+ ions entering the lattice sites of GdMnO3 induce structural distortion. SEM results indicate that the grain size of the synthesized samples (a few microns) decreases as the Cr substitution concentration increases. Positron annihilation lifetime spectroscopy reveals that vacancy-type defects occur in GdMn1-xCrxO3 ceramics and that the vacancy size and concentration clearly change with the Cr content. The temperature and field dependence of the magnetization curves show that Cr substitution significantly influences the magnetic ordering of the gadolinium sublattice, improving the weak ferromagnetic transition temperature and magnetization of GdMn1-xCrxO3. The enhanced magnetization of GdMn1-xCrxO3 is closely related to the vacancy defect concentration.  相似文献   
8.
Monitoring the temperature in liquid hydrogen (LH2) storage tanks on ships is important for the safety of maritime navigation. In addition, accurate temperature measurement is also required for commercial transactions. Temperature and pressure define the density of liquid hydrogen, which is directly linked to trading interests. In this study, we developed and tested a liquid hydrogen temperature monitoring system that uses platinum resistance sensors with a nominal electrical resistance of approximately 1000 Ω at room temperature, PT-1000, for marine applications. The temperature measurements were carried out using a newly developed temperature monitoring system under different pressure conditions. The measured values are compared with a calibrated reference PT-1000 resistance thermometer. We confirm a measurement accuracy of ±50 mK in a pressure range of 0.1 MPa–0.5 MPa.  相似文献   
9.
Hydrogel-based nanofibers or vice versa are a relatively new class of nanomaterials, in which hydrogels are structured in nanofibrous form. Structure and size of the material directly governs its functionality, therefore, in hydrogel science, the nanofibrous form of hydrogels enables its usage in targeted applications. Hydrogel nanofiber system combines the desirable properties of both hydrogel and nanofiber like flexibility, soft consistency, elasticity, and biocompatibility due to high water content, large surface area to volume ratio, low density, small pore size and interconnected pores, high stiffness, tensile strength, and surface functionality. Swelling behavior is a critical property of hydrogels that is significantly increased in hydrogel nanofibers due to their small size. Electrospinning is the most popular method to fabricate “hydrogel nanofibers,” while other processes like self-assembly, solution blowing and template synthesis also exist. Merging the characteristics of both hydrogels and nanofibers in one system allows applications in drug delivery, tissue engineering, actuation, wound dressing, photoluminescence, light-addressable potentiometric sensor (LAPS), waterproof breathable membranes, and enzymatic immobilization. Treatment of wastewater, detection, and adsorption of metal ions are also emerging applications. In this review paper, we intend to summarize in detail about electrospun “hydrogel nanofiber” in relation to its synthesis, properties, and applications.  相似文献   
10.
Chemical engineering systems often involve a functional porous medium, such as in catalyzed reactive flows, fluid purifiers, and chromatographic separations. Ideally, the flow rates throughout the porous medium are uniform, and all portions of the medium contribute efficiently to its function. The permeability is a property of a porous medium that depends on pore geometry and relates flow rate to pressure drop. Additive manufacturing techniques raise the possibilities that permeability can be arbitrarily specified in three dimensions, and that a broader range of permeabilities can be achieved than by traditional manufacturing methods. Using numerical optimization methods, we show that designs with spatially varying permeability can achieve greater flow uniformity than designs with uniform permeability. We consider geometries involving hemispherical regions that distribute flow, as in many glass chromatography columns. By several measures, significant improvements in flow uniformity can be obtained by modifying permeability only near the inlet and outlet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号