首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163358篇
  免费   26602篇
  国内免费   6932篇
电工技术   9454篇
技术理论   1篇
综合类   9920篇
化学工业   36193篇
金属工艺   7666篇
机械仪表   9007篇
建筑科学   11843篇
矿业工程   3969篇
能源动力   4101篇
轻工业   17217篇
水利工程   3082篇
石油天然气   6607篇
武器工业   1215篇
无线电   21604篇
一般工业技术   24661篇
冶金工业   5907篇
原子能技术   1496篇
自动化技术   22949篇
  2024年   604篇
  2023年   1977篇
  2022年   4033篇
  2021年   5768篇
  2020年   5552篇
  2019年   6264篇
  2018年   6519篇
  2017年   7476篇
  2016年   7512篇
  2015年   9489篇
  2014年   10659篇
  2013年   13061篇
  2012年   11879篇
  2011年   12188篇
  2010年   11605篇
  2009年   11129篇
  2008年   10429篇
  2007年   9926篇
  2006年   9094篇
  2005年   7667篇
  2004年   5548篇
  2003年   4748篇
  2002年   4461篇
  2001年   3873篇
  2000年   3477篇
  1999年   2747篇
  1998年   1631篇
  1997年   1456篇
  1996年   1281篇
  1995年   1046篇
  1994年   857篇
  1993年   645篇
  1992年   496篇
  1991年   399篇
  1990年   296篇
  1989年   273篇
  1988年   216篇
  1987年   135篇
  1986年   117篇
  1985年   62篇
  1984年   49篇
  1983年   31篇
  1982年   36篇
  1981年   26篇
  1980年   36篇
  1979年   20篇
  1978年   13篇
  1976年   12篇
  1959年   11篇
  1951年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Feng  Wenran  Li  Zhen  Chen  Yingying  Chen  Jinyang  Lang  Haoze  Wan  Jianghong  Gao  Yan  Dong  Haitao 《Journal of Materials Science》2022,57(3):1881-1889
Journal of Materials Science - Although chalcogenide materials continue to generate considerable interest due to great potentials for various optoelectronic devices, annealing for a long time in...  相似文献   
2.
3.
Ceramic microparticles have great potentials in various fields such as materials engineering, biotechnology, microelectromechanical systems, etc. Morphology of the microparticle performs an important role on their application. To date, it remains difficult to find an effective and controllable way for fabricating nonspherical ceramic microparticles with 3D features. This work demonstrates a method that combines UV light lithography and single emulsion opaque-droplet-templated microfluidic molding to prepare the crescent-shaped ceramic microparticles. By tailoring the intensity of UV light and flow rate of fluid, the shapes of microparticles are accordingly tuned. Therefore, varieties of crescent-shaped microparticles and their variations have been fabricated. After sintering, the crescent-shaped alumina ceramic microparticles were obtained. Benefitting from the light absorption and scattering behavior of most ceramic nanoparticles, this system can serve as a general platform to produce crescent-shaped microparticles made from different materials, and hold great potentials for applications in microrobotics, structural materials in MEMS, and biotechnology.  相似文献   
4.
Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials.  相似文献   
5.
Composites based on hafnium carbide and reinforced with continuous naked carbon fiber with and without PyC interface were prepared at low temperature by precursor infiltration and pyrolysis and chemical vapor deposition method. The microstructure, mechanical property, cyclic ablation and fiber bundle push-in tests of the composites were investigated. The results show that after three times ablation cycles, the bending strength of samples without PyC interface decreased by 63.6 %; the bending strength of samples with PyC interface only decreased by 37.8 %. The force displacement curve of the samples with PyC interface presented a well pseudoplastic deformation state. The mechanical behavior difference of two kinds of composites was due to crucial function of PyC interface phase including protection of fiber and weakening of fiber/matrix interface.  相似文献   
6.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
7.
8.
To evaluate the separate impacts on human health and establish effective control strategies, it is crucial to estimate the contribution of outdoor infiltration and indoor emission to indoor PM2.5 in buildings. This study used an algorithm to automatically estimate the long-term time-resolved indoor PM2.5 of outdoor and indoor origin in real apartments with natural ventilation. The inputs for the algorithm were only the time-resolved indoor/outdoor PM2.5 concentrations and occupants’ window actions, which were easily obtained from the low-cost sensors. This study first applied the algorithm in an apartment in Tianjin, China. The indoor/outdoor contribution to the gross indoor exposure and time-resolved infiltration factor were automatically estimated using the algorithm. The influence of outdoor PM2.5 data source and algorithm parameters on the estimated results was analyzed. The algorithm was then applied in four other apartments located in Chongqing, Shenyang, Xi'an, and Urumqi to further demonstrate its feasibility. The results provided indirect evidence, such as the plausible explanations for seasonal and spatial variation, to partially support the success of the algorithm used in real apartments. Through the analysis, this study also identified several further development directions to facilitate the practical applications of the algorithm, such as robust long-term outdoor PM2.5 monitoring using low-cost light-scattering sensors.  相似文献   
9.
Ultrawide band gap semiconductor materials have attracted considerable attention in recent years owing to their great potential in the photocatalytic field. In this study, Zn-doped Ga2O3 nanofibers with various concentrations were synthesized via electrospinning; they exhibited a superior photocatalytic degradation performance of rhodamine B dye compared to that of undoped Ga2O3 nanofibers. The Zn dopant replaced Ga sites via replacement doping, which could increase the concentration of oxygen vacancies and lead to enhanced photocatalytic properties. When the Zn concentration increased, a Ga2O3/ZnGa2O4 hybrid structure formed, which could further enhance the photocatalytic performance. The separation of photogenerated carriers due to Zn doping and heterojunctions were the primary causes of the enhanced photocatalytic performance. This study provides experimental data for the fabrication of high-performance photocatalysts based on Ga2O3 nanomaterials.  相似文献   
10.
Abnormal levels of glutathione, a cellular antioxidant, can lead to a variety of diseases. We have constructed a near-infrared ratiometric fluorescent probe to detect glutathione concentrations in biological samples. The probe consists of a coumarin donor, which is connected through a disulfide-tethered linker to a rhodamine acceptor. Under the excitation of the coumarin donor at 405 nm, the probe shows weak visible fluorescence of the coumarin donor at 470 nm and strong near-infrared fluorescence of the rhodamine acceptor at 652 nm due to efficient Forster resonance energy transfer (FRET) from the donor to the acceptor. Glutathione breaks the disulfide bond through reduction, which results in a dramatic increase in coumarin fluorescence and a corresponding decrease in rhodamine fluorescence. The probe possesses excellent cell permeability, biocompatibility, and good ratiometric fluorescence responses to glutathione and cysteine with a self-calibration capability. The probe was utilized to ratiometrically visualize glutathione concentration alterations in HeLa cells and Drosophila melanogaster larvae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号