首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
冶金工业   4篇
  2024年   1篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
为了控制低碳铝镇静钢中Al2O3夹杂物,并提升渣系对Al2O3夹杂物吸附能力,采用FactSage 8.1模拟计算CaO-SiO2-Al2O3-5%MgO-5%FeO渣系的等黏度图和等ΔC/η(ΔC=C■-C■,η为渣的黏度)值线图。根据模拟计算图选取合适的五元精炼渣做Al2O3的吸附试验,试验研究了Al2O3在CaO-SiO2-Al2O3-5%MgO-5%FeO渣系中的溶解速率,讨论了Al2O3棒浸入深度、直径、转速、渣成分以及温度对Al2O3溶解速率的影响,求解了Al2O3在溶解过程中的活化能。最后,采用场发射扫描电子显微镜(Apreo S HiVa...  相似文献   
2.
对钢中氮含量的变化趋势及其影响因素进行了研究分析。结果表明,转炉终点N含量偏高是导致钢中N量升高的主要原因,且相较有精炼工序的炉次,无精炼工序的出钢过程增N量偏高;入炉铁水比、废钢及焦炭加入量、转炉底吹工艺及终点碳含量控制等均是导致钢中氮含量升高的主要因素。通过以硅碳球替代部分或全部焦炭,采用部分铁块搭配废钢使用的原料结构,调整氮氩切换时间、后搅气量及后搅时间,控制转炉终点碳含量及脱氧合金加入顺序等措施,实现了钢中氮含量控制在50 ppm以内,铸坯角裂率大大降低,产品质量得到有效提升。  相似文献   
3.
为有效控制SPHC钢中氮含量,德龙钢铁公司对冶炼工序中可能增氮的6个环节进行了研究,统计了炼钢工序各环节的氮含量,并对影响增氮的因素进行了分析。结果表明:转炉冶炼终点钢水氮含量波动较大是造成钢材氮含量超标的主要原因,其余工序增氮量较小,且波动较小。通过优化转炉冶炼工艺方案,工业化生产的成品材中氮含量稳定控制在35 ppm。  相似文献   
4.
对“转炉-吹氩站-连铸”工艺流程生产的低碳铝镇静钢工艺各环节取样,并对渣、钢成分进行分析,采用自动扫描电子显微镜研究了钢中夹杂物的大小、密度及成分,以期寻求相应对策来控制钢中氧含量及夹杂物数量。结果表明:转炉吹炼末期控制氧流量26 000 m3·h-1,可把钢中氧由0.071 4%降低至0.057 2%,转炉渣中(FeO+MnO)%由15.71%降至14.09%,减轻转炉吹炼末期钢液过氧化。吹氩氩气流量提升至600 L/min后,氩站工序钢液中夹杂物去除率达62.7%。通过协同控制转炉出钢时下渣量至50 mm,采取保护浇铸等手段,SPHC低碳铝镇静钢中氧和氮分别降低至0.001 11%和0.002 15%,≥2.0级和≥1.0级的夹杂物比例分别由9.2%和20.0%降低至6.9%和16.2%。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号