首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学工业   2篇
轻工业   1篇
一般工业技术   3篇
冶金工业   9篇
  2016年   1篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  1997年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
In this work, we focus on a complex-network approach for the study of the brain. In particular, we consider functional brain networks, where the vertices represent different anatomical regions and the links their functional connectivity. First, we build these networks using data obtained with functional magnetic resonance imaging. Then, we analyse the main characteristics of these complex networks, including degree distribution, the presence of modules and hierarchical structure. Finally, we present a network model with dynamical nodes and adaptive links. We show that the model allows for the emergence of complex networks with characteristics similar to those observed in functional brain networks.  相似文献   
6.
Recent studies of brain connectivity and language with methods of complex networks have revealed common features of organization. These observations open a window to better understand the intrinsic relationship between the brain and the mind by studying how information is either physically stored or mentally represented. In this paper, we review some of the results in both brain and linguistic networks, and we illustrate how modelling approaches can serve to comprehend the relationship between the structure of the brain and its function. On the one hand, we show that brain and neural networks display dynamical behaviour with optimal complexity in terms of a balance between their capacity to simultaneously segregate and integrate information. On the other hand, we show how principles of neural organization can be implemented into models of memory storage and recognition to reproduce spontaneous transitions between memories, resembling phenomena of memory association studied in psycholinguistic experiments.  相似文献   
7.
8.
In this paper, the authors compare and contrast two psychotherapy paradigms for the treatment of complex posttraumatic stress disorder (PTSD): a behavioral therapy (prolonged exposure; PE) and an experiential therapy (Accelerated Experiential Dynamic Psychotherapy; AEDP). PE has received strong research support as an effective treatment for PTSD. The scientific evidence for experiential therapy is sparser, but also positive. In addition, clinical and research evidence suggest that (a) experiential processes are inherently embedded in PE, and may influence PE outcomes; and that (b) AEDP addresses several clinical and relational factors that are negative prognostic factors for PE (e.g., affect dysregulation, disorganized attachment, sense of alienation and mental defeat, dissociation, and disorders of the self). Suggestions are provided for further empirical exploration of the process and efficacy of AEDP and experientially informed PE for complex cases of PTSD. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
9.
10.
The main water channel of the brain, aquaporin-4 (AQP4), is one of the classical water-specific aquaporins. It is expressed in many epithelial tissues in the basolateral membrane domain. It is present in the membranes of supporting cells in most sensory organs in a specifically adapted pattern: in the supporting cells of the olfactory mucosa, AQP4 occurs along the basolateral aspects, in mammalian retinal Müller cells it is highly polarized. In the cochlear epithelium of the inner ear, it is expressed basolaterally in some cells but strictly basally in others. Within the central nervous system, aquaporin-4 (AQP4) is expressed by cells of the astroglial family, more specifically, by astrocytes and ependymal cells. In the mammalian brain, AQP4 is located in high density in the membranes of astrocytic endfeet facing the pial surface and surrounding blood vessels. At these locations, AQP4 plays a role in the maintenance of ionic homeostasis and volume regulation. This highly polarized expression has not been observed in the brain of fish where astroglial cells have long processes and occur mostly as radial glial cells. In the brain of the zebrafish, AQP4 immunoreactivity is found along the radial extent of astroglial cells. This suggests that the polarized expression of AQP4 was not present at all stages of evolution. Thus, a polarized expression of AQP4 as part of a control mechanism for a stable ionic environment and water balanced occurred at several locations in supporting and glial cells during evolution. This initially basolateral membrane localization of AQP4 is shifted to highly polarized expression in astrocytic endfeet in the mammalian brain and serves as a part of the neurovascular unit to efficiently maintain homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号