首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
金属工艺   4篇
机械仪表   1篇
一般工业技术   2篇
冶金工业   2篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.

The microstructural evolution during refill friction stir spot welding of an AlMgSc alloy was studied. The primary texture that developed in all regions, with the exception of the weld center, was determined to be 〈110〉 fibers and interpreted as a simple shear texture with the 〈110〉 direction aligned with the shear direction. The material flow is mainly driven by two components: the simple shear acting on the horizontal plane causing an inward-directed spiral flow and the extrusion acting on the vertical plane causing an upward-directed or downward-directed flow. Under such a complex material flow, the weld center, which is subjected to minimal local strain, is the least recrystallized. In addition to the geometric effects of strain and grain subdivision, thermally activated high-angle grain boundary migration, particularly continuous dynamic recrystallization, drives the formation of refined grains in the stirred zone.

  相似文献   
3.
In the present study, dissimilar welds of an Al–Mg–Mn alloy and a Zn-coated high-strength low-alloy steel were welded by refill friction stir spot welding. The maximum shear load recorded was approximately 7.8?kN, obtained from the weld produced with a 1600?rev min?1 tool rotational speed. Microstructural analyses showed the formation of a solid–liquid structure of an Al solid solution in Mg–Al-rich Zn liquid, which gives rise to the formation of Zn-rich Al region and microfissuring in some regions during welding. Exposure of steel surface to Mg–Al-rich Zn liquid led to the formation of Fe2Al5 and Fe4Al13 intermetallics. The presence of defective Zn-rich Al regions and Fe–Al intermetallics at the faying surface affects the weld strength.  相似文献   
4.
5.
The microstructural evolution during friction surfacing of an aluminum alloy 6082-T6 rod on an aluminum alloy 2024-T351 substrate was characterized using the electron backscatter diffraction technique. Crystallographic data were obtained from several regions in the consumable material and in the deposited material. From the results, it can be deduced that the grain structure formation was a complex process governed by the geometrical effect of strain and the superposition of continuous and discontinuous dynamic recrystallizations.  相似文献   
6.
Refill friction stir spot welding was applied to weld similar thin AA 7075-T6 aluminum alloy sheets in a spot-like joint configuration without a keyhole. The welds were produced using a small tool consisting of sleeve and probe with diameters of 6 mm and 4 mm, respectively. Design of experiment was employed to optimize the welding parameters in terms of the cross tensile strength by using Box Behnken Design. Based on analysis of variance, it can be concluded that plunge depth strongly affects the mechanical performance of the weld. Optimal welding parameters in terms of rotational speed, plunge depth and speed are identified to reach a cross tensile strength of up to 660 N.  相似文献   
7.
Refill friction stir spot welding is a solid‐state process technology that is suitable for welding lightweight materials in similar or dissimilar overlapped configuration. In this study, the fatigue behaviour of single overlapped spot joints of AA2024‐T3 was studied. To statistically analyse the fatigue data, a 2‐parameter Weibull distribution was deployed, considering several reliabilities (Re = 0.99, Re = 0.90, Re = 0.5, Re = 0.10). To obtain an optimized weld parameter according to the fatigue behaviour, 2 different weld conditions were studied, taking into account the effect of the hook formation. The microstructure analyses and microhardness profiles showed great similarity in both weld conditions. However, these conditions presented distinct interfacial hook profiles, in which the interfacial hook downward represented better fatigue life and infinite fatigue life at 15% of the maximum strength load. The fracture surfaces obtained from 3 different fracture modes were investigated by using scanning electron microscopy; the crack was tracked and described according to its fracture mechanisms from its initiation until the final failures. It was observed that the crack is initiated at hook profile.  相似文献   
8.
9.
Microstructural features were studied along the cross-section of AZ31 magnesium alloy friction spot welded joints made using different combinations of welding parameters. Static lap shear testing was performed to evaluate the mechanical properties of the welded joints, and the resulting fracture mechanisms and crack propagation paths were fully examined. Failure load is optimized when the welding procedure is performed with the combination of parameters that maximizes the material mixing, the size of fully metallurgical bonding and simultaneously minimizes the vertical displacement of hook region. The welds demonstrate three failure modes during lap shear testing: through the weld and non-circumferential pull-out modes, in which crack propagation crosses the recrystallized zone, and circumferential pull-out mode, around this zone.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号