首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
能源动力   1篇
无线电   1篇
原子能技术   8篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  1995年   1篇
排序方式: 共有10条查询结果,搜索用时 78 毫秒
1
1.
Plasma facing components (PFCs) with tungsten (W) armor materials for DEMO divertor require a high heat flux removal capability (at least 10 MW/m2 in steady-state conditions). The reference divertor PFC concept is a finger with a tungsten tile as a protection and sacrificial layer brazed to a thimble made of tungsten alloy W – 1% La2O3 (WL10). Defects may be located at the W thimble to W tile interface. As the number of fingers is considerable (>250,000), it is then a major issue to develop a reliable control procedure in order to control with a non-destructive examination the fabrication processes. The feasibility for detecting defect with infrared thermography SATIR test bed is presented. SATIR is based on the heat transient method and is used as an inspection tool in order to assess component heat transfer capability. SATIR tests were performed on fingers integrating or not the complex He cooling system (steel cartridge with jet holes). Millimeter size artificial defects were manufactured and their detectability was evaluated. Results of this study demonstrate that the SATIR method can be considered as a relevant non-destructive technique examination for the defect detection of DEMO divertor fingers.  相似文献   
2.
An approach that combines computational fluid dynamics (CFD) and structural mechanics simulation is used for evaluating stresses in a divertor cooling finger. Local distributions of heat transfer coefficient (HTC) between the helium and inner surface of the thimble are used as a boundary condition for the structural mechanics analysis. Stresses calculated with a realistic non-homogeneous HTC distribution are compared with the results where averaged HTC values in three representative zones of inner thimble surface are used. The obtained maximum stresses are considerably higher in the case of realistic non-homogeneous HTC boundary condition. The highest thermal stresses in the tile–thimble assembly are obtained on the thimble inner surface, in the region where the highest thermal gradients due to jet cooling can be observed. The results also show that tetrahedral based finite element model underestimate the computed stresses, especially when a coarse mesh is used.  相似文献   
3.
A present topic of high interest in magnetic fusion is the “gap” between near-term and long-term concepts for high heat flux components (HHFC), and in particular for divertors. This paper focuses on this issue with the aim of characterizing the international status of current HHFC design concepts for ITER and describing the different technologies needed in the designs being developed for fusion power plants. Critical material and physics aspects are highlighted while evaluating the current readiness level of long-term concepts, identifying the design and R&D gaps, and discussing ways to bridge them.  相似文献   
4.
The use of impinging jets for divertor cooling in the conceptual fusion power plant is attracting much attention due to its very high heat removal capability and moderate pumping power requirement. The latest and the most advanced divertor concept is based on modular design cooled by helium impinging jets. To reduce the thermal stresses, the plasma-facing side of the divertor is build up of numerous small cooling fingers cooled by an array of helium jets. In this study the influence of nozzle sizes on the heat transfer and flow characteristics of such cooling finger is investigated numerically. The main objective is to find an optimal size and distribution of nozzle diameters in the jet array in which the heat transfer would be the highest possible at an acceptable pressure drop through the cooling finger. Prior to nozzle diameters modification, the simulation results for the reference finger geometry were validated against high heat flux experiments. A good agreement was obtained. The nozzle diameters were then modified at two different mass flow rates (13.5 g/s and 6.8 g/s per cooling finger). The most critical design parameter of interest was the maximum thimble temperature, which is limited by the melting temperature of the filler material in the brazed finger joint. It has been found that an optimal jet arrangement should have equal nozzle diameters to reach the highest thimble temperature decrease, while keeping the pressure drop within reasonable limits.  相似文献   
5.
To investigate the heat removal capability of conceptual divertor cooling fingers, accurate computational fluid dynamics (CFD) analyses are indispensable. Although the cooling performance of the divertor finger has been successfully high-heat-flux tested under real DEMO conditions in a combined helium loop and electron beam facility at the Efremov Institute, Russia, an accompanying numerical simulation of the experiments is of great importance. This might help to better understand the complex thermo-hydraulic conditions with the aim of predicting other different load cases. To accurately reproduce the experimental boundary conditions, the Gaussian-like shape of the absorbed power was taken into account and the heat losses were estimated. Modeling of the structure thermal conductivity was also found to be an important source of modeling uncertainty. In the context of accurate modeling of experimental conditions, the effect of some modeling assumptions was evaluated. Transient simulations of the cyclic heat flux experiment were performed only for the solid part of the cooling finger to avoid excessively long computation times. The helium cooling was taken into account by the heat transfer coefficient (HTC) on the fluid–structure interface, obtained from the steady-state simulations of the full solid–fluid model. The HTC distribution did not vary with time throughout the entire transient simulation. The modeling error associated with such HTC approximation was estimated for the particular cyclic experiment. It is shown that the simulated temperature cycles on the top of experimental mock-up agree well with the measured data.  相似文献   
6.
A He-cooled divertor concept for DEMO is being investigated at the Forschungszentrum Karlsruhe within the framework of the EU power plant conceptual study. The design goal is to resist a heat flux of 10 MW/m2 at least. The major R&D areas are design, analyses, fabrication technology, and experimental design verification. A modular design is preferred for thermal stress reduction. The HEMJ (He-cooled modular divertor with multiple-jet cooling) was chosen as reference concept. It employs small tiles made of tungsten, which are brazed to a thimble made of tungsten alloy W-1%La2O3. The W finger units are connected to the main structure of ODS Eurofer steel by means of a copper casting with mechanical interlock. The divertor modules are cooled by helium jets (10 MPa, 600 °C) impinging onto the heated inner surface of the thimble.In cooperation with the Efremov Institute a combined helium loop & electron beam facility (60 kW, 27 keV) was built in St. Petersburg, Russia, for experimental verification of the design. It enables mock-up testing at a nominal helium inlet temperature of 600 °C, an internal pressure of 10 MPa, and a pressure difference in the mock-up of up to 0.5 MPa. Technological studies were performed on manufacturing of the W finger mock-ups. Several high heat flux tests were successfully performed till now. Post-examination and characterisation of the mock-ups subjected to the high heat flux tests were performed in collaboration with Forschungszentrum Jülich. Altogether, the test results confirm the divertor performance required. The helium-cooled divertor concept was demonstrated to be feasible. The knowledge gained from these experiments and some aspects on the design improvement are discussed in this contribution.  相似文献   
7.
At Karlsruhe Institute of Technology (KIT), a He-cooled divertor design for future fusion power plants has been developed. This concept is based on the use of modular cooling fingers made from tungsten and tungsten alloy, which are presently considered the most promising divertor materials to withstand the specific heat load of 10 MW/m2. Since a large number of the finger modules (n > 250,000) are needed for the whole reactor, developing a mass-oriented manufacturing method is indispensable. In this regard, an innovative manufacturing technology, Powder Injection Molding (PIM), has been adapted to W processing at KIT since a couple of years. This production method is deemed promising in view of large-scale production of tungsten parts with high near-net-shape precision, hence, offering an advantage of cost-saving process compared to conventional machining.The complete technological PIM process for tungsten materials and its application on manufacturing of real divertor components, including the design of a new PIM tool is outlined and, results of the examination of the finished product after heat-treatment are discussed. A binary tungsten powder feedstock with a solid load of 50 vol.% was developed and successfully tested in molding experiments. After design, simulation and manufacturing of a new PIM tool, real divertor parts are produced. After heat-treatment (pre-sintering and HIP) the successful finished samples showed a sintered density of approximately 99%, a hardness of 457 HV0.1, a grain size of approximately 5 μm and a microstructure without cracks and porosity.  相似文献   
8.
In support of shadowing of the divertor target plate edges in toroidal direction against damage caused by the incident particles, the fingers at the boundary of the target plate should ideally form a flat surface. The reference cooling fingers are of hexagonal shape and when assembled together, their edge boundary cannot be flat. Therefore, the boundary segments need to be designed in a different way. Three possible designs are investigated: non-symmetric pentagonal fingers and two square-shaped fingers of different sizes, all cooled by the same type of concentric cartridge as in the reference design. Their heat transfer performance is analyzed from the point of view of maximum allowable temperature of the thimble structure. The computational fluid dynamics (CFD) analysis is performed to obtain the minimum mass flow rate of the coolant which is necessary to keep the structure's temperature below the permissible limit at an acceptable pressure loss.  相似文献   
9.
The gyrotron system forECH and burn control onITER requires at least50MW ofRF power at frequencies near170GHz operating inCW. To meet these requirements, high efficiency gyrotron tubes with ≥1MW power output capability are necessary, as well as simple coupling to either a quasi-optical or waveguide transmission line. The paper reports the feasibility study on the design of anITER-relevant gyrotron oscillator at170GHz,1MW CW employing a diode electron gun, an advanced internal quasi-optical converter, a cryogenically cooled single disk sapphire window, and a depressed potential collector. The operating mode selection and the cavity design is a compromise between many design constraints.  相似文献   
10.
A He-cooled divertor concept for DEMO [1] has been developed at Karlsruhe Institute of Technology (KIT) since a couple of years with the goal of reaching a heat flux of 10 MW/m2 anticipated for DEMO. The reference concept HEMJ (He-cooled modular divertor with multiple-jet cooling) is based on the use of small cooling fingers – each composed of a tungsten tile brazed to a tungsten alloy thimble – as well as on impingement jet cooling with helium at 10 MPa, 600 °C. The cooling fingers are connected to the main structure of ODS Eurofer steel by brazing in combination with a mechanical interlock. This paper reports progress to date of the design accompanying R&Ds, i.e. primarily the fabrication technology and HHF experiments. For the latter a combined helium loop and electron beam facility (200 kW, 40 keV) at Efremov Institute, St. Petersburg, Russia, has been used. This facility enables mock-up testing at a nominal helium inlet temperature of 600 °C, a pressure of 10 MPa, and a maximal pressure head of 0.5 MPa. HHF test results till now confirm well the divertor design performance. In the recent test series in early 2010 the first breakthrough was achieved when a mock-up has survived over 1000 cycles at 10 MW/m2 unscathed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号