首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14350篇
  免费   348篇
  国内免费   147篇
电工技术   192篇
综合类   5篇
化学工业   1293篇
金属工艺   510篇
机械仪表   138篇
建筑科学   184篇
矿业工程   14篇
能源动力   186篇
轻工业   533篇
水利工程   52篇
石油天然气   22篇
无线电   671篇
一般工业技术   793篇
冶金工业   624篇
原子能技术   114篇
自动化技术   9514篇
  2024年   10篇
  2023年   42篇
  2022年   84篇
  2021年   159篇
  2020年   102篇
  2019年   160篇
  2018年   178篇
  2017年   171篇
  2016年   207篇
  2015年   140篇
  2014年   411篇
  2013年   481篇
  2012年   1003篇
  2011年   3368篇
  2010年   1332篇
  2009年   1207篇
  2008年   877篇
  2007年   752篇
  2006年   587篇
  2005年   689篇
  2004年   604篇
  2003年   667篇
  2002年   376篇
  2001年   56篇
  2000年   56篇
  1999年   77篇
  1998年   228篇
  1997年   119篇
  1996年   110篇
  1995年   46篇
  1994年   53篇
  1993年   50篇
  1992年   32篇
  1991年   24篇
  1990年   27篇
  1989年   24篇
  1988年   28篇
  1987年   30篇
  1986年   32篇
  1985年   21篇
  1984年   40篇
  1983年   22篇
  1982年   29篇
  1981年   20篇
  1979年   10篇
  1978年   5篇
  1977年   20篇
  1976年   41篇
  1975年   6篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
This review is devoted to the structure, assembly and function of cuticle. The topics are discussed from the mechanical perspective and whenever the data are available a special attention is paid to the cuticle of perianth organs, i.e., sepals, petals or tepals. The cuticle covering these organs is special in both its structure and function and some of these peculiarities are related to the cuticle mechanics. In particular, strengthening of the perianth surface is often provided by a folded cuticle that functionally resembles profiled plates, while on the surface of the petal epidermis of some plants, the cuticle is the only integral continuous layer. The perianth cuticle is distinguished also by those aspects of its mechanics and development that need further studies. In particular, more investigations are needed to explain the formation and maintenance of cuticle folding, which is typical for the perianth epidermis, and also to elucidate the mechanical properties and behavior of the perianth cuticle in situ. Gaps in our knowledge are partly due to technical problems caused by very small thicknesses of the perianth cuticle but modern tools may help to overcome these obstacles.  相似文献   
2.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
3.
In this paper, a new inverse identification method of constitutive parameters is developed from full kinematic and thermal field measurements. It consists in reconstructing the heat source field from two different approaches by using the heat diffusion equation. The first one requires the temperature field measurement and the value of the thermophysical parameters. The second one is based on the kinematic field measurement and the choice of a thermo-hyperelastic model that contains the parameters to be identified. The identification is carried out at the local scale, ie, at any point of the heat source field, without using the boundary conditions. In the present work, the method is applied to the challenging case of hyperelasticity from a heterogeneous test. Due to large deformations undergone by the rubber specimen tested, a motion compensation technique is developed to plot the kinematic and the thermal fields at the same points before reconstructing the heterogeneous heat source field. In the present case, the constitutive parameter of the Neo-Hookean model has been identified, and its distribution has been characterized with respect to the strain state at the surface of a cross-shaped specimen.  相似文献   
4.
Magnetic MnFe2O4 nanopowders were synthesized by an original solvothermal method in the absence and in the presence of tetra-n-butylammonium bromide (TBAB) and Tween 80 (TW) as surfactants. Manganese ferrite/polyaniline (PANI) hybrid materials were synthesized by in situ polymerization of aniline on the surface of MnFe2O4 using ammonium persulfate as oxidant. The purpose of the study was to investigate the influence of the two surfactants on the properties of the MnFe2O4 powders and of their composites with PANI. The specific surface area, the cumulative surface area of pores and the cumulative volume of pores are influenced by the nature of surfactant in case of MnFe2O4 powders and are higher by comparison to those of the MnFe2O4/PANI hybrid materials. The values of saturation magnetization in case of MnFe2O4 powders are higher than those of the hybrid materials and are not influenced by the surfactant nature. These features revealed that MnFe2O4 powders can be efficiently used as adsorbents for the purification of wastewaters. The values of the electrical conductivity of the composites exhibit a significant increase in comparison to the MnFe2O4 powders and depend on the surfactant nature. The highest value of electrical conductivity was achieved by the composite obtained using Tween 80 as surfactant (σDC = 54.5·10?5S?m?1) which was close to that of PANI (σDC = 61.2·10?5 S?m?1). The fact that the magnetic and electric properties of the synthesized MnFe2O4/PANI composites can be changed by design, demonstrate the high potential of these materials to be used in magneto-electric applications.  相似文献   
5.
Porous alumina with a highly textured microstructure was fabricated by pulse electric current sintering (PECS) using alumina platelets. Highly oriented porous alumina with a porosity of 3%–50% was obtained by a pressure-controlled method of PECS. The properties of the highly textured porous alumina were measured in two directions. The nitrogen gas permeance and thermal conductivity at room temperature were higher in the direction along the platelet length due to the higher continuity of pores and the connectivity of alumina platelets, respectively. The anisotropy of the thermal conductivity at room temperature was investigated and explained by the effect of grain size of platelets as well as morphology and orientation of pores. The bending strength was higher with the loading direction along the platelet thickness. The thermal shock strength was clearly different in the two directions. The difference in the thermal shock strength was investigated by the measurement of properties and thermal stress analysis.  相似文献   
6.
Telecommunication Systems - The Software-Defined Networking (SDN) architecture decouples the control plane from the data plane, but it does not explicitly state where the control should be located....  相似文献   
7.
Chiral molecules, especially enantiomers and diastereomers of purity > 99 %, present a significant market share within the chemical, pharmaceutical, and flavor industries. Antisolvent precipitations, both batch and semicontinuous operations to serve the current trends in flow chemistry were demonstrated to be environmentally benign and efficient tools in achieving high optical purities. Although salts are known to be insoluble in supercritical CO2, instabilities of the nascent salts were detected and applied for increasing efficiency. Diastereomeric excess values of the crystalline products exceeded 99 % in maximum of three consecutive steps both by repeated resolution with half molar equivalent of the amine to the acid and by direct recrystallization of the salts.  相似文献   
8.
The high cost and potential toxicity of biodegradable polymers like poly(lactic‐co‐glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate–modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α‐lactalbumin (α‐L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim–Andersen–de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%‐OSA‐modified DWxCn, WPI, 3%‐OSA‐modified DWxRc, α‐L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid‐like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%‐OSA modification had a “melted” appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA‐modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications.  相似文献   
9.
10.
Antibiotics are potentially a cause of neurotoxicity in dialysis patients, the most common are the beta‐lactams as ceftazidime and cefepime, and few cases have been reported after piperacillin/tazobactam use. This report presents a case of a hypertensive and diabetic 67‐year‐old woman in regular hemodialysis, which previously had a stroke. She was hospitalized presenting pneumonia, which was initially treated with cefepime. Two days after treatment, she presented dysarthria, left hemiparesis, ataxia, and IX and X cranial nerves paresis. Computed tomography showed no acute lesions and cefepime neurotoxicity was hypothesized, and the antibiotic was replaced by piperacillin/tazobactam. The neurologic signs disappeared; however, 4 days after with piperacillin/tazobactam treatment, the neurological manifestations returned. A new computed tomography showed no new lesions, and the second antibiotic regimen withdrawn. After two hemodialysis sessions, the patient completely recovered from neurological manifestations. The patient presented sequentially neurotoxicity caused by two beta‐lactams antibiotics. This report meant to alert clinicians that these antibiotics have dangerous neurological effects in chronic kidney disease patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号