首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19625篇
  免费   1589篇
  国内免费   903篇
电工技术   1011篇
技术理论   3篇
综合类   1410篇
化学工业   3509篇
金属工艺   1048篇
机械仪表   1060篇
建筑科学   1539篇
矿业工程   565篇
能源动力   541篇
轻工业   1115篇
水利工程   319篇
石油天然气   1323篇
武器工业   122篇
无线电   2285篇
一般工业技术   2666篇
冶金工业   931篇
原子能技术   240篇
自动化技术   2430篇
  2024年   68篇
  2023年   305篇
  2022年   509篇
  2021年   768篇
  2020年   562篇
  2019年   491篇
  2018年   537篇
  2017年   557篇
  2016年   487篇
  2015年   688篇
  2014年   879篇
  2013年   1020篇
  2012年   1168篇
  2011年   1286篇
  2010年   1138篇
  2009年   1147篇
  2008年   1105篇
  2007年   1059篇
  2006年   1080篇
  2005年   953篇
  2004年   630篇
  2003年   618篇
  2002年   540篇
  2001年   467篇
  2000年   514篇
  1999年   565篇
  1998年   500篇
  1997年   458篇
  1996年   423篇
  1995年   376篇
  1994年   276篇
  1993年   215篇
  1992年   170篇
  1991年   101篇
  1990年   113篇
  1989年   115篇
  1988年   74篇
  1987年   36篇
  1986年   30篇
  1985年   24篇
  1984年   14篇
  1983年   11篇
  1982年   16篇
  1981年   7篇
  1980年   11篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
To investigate the evolution of the structural and enhanced magnetic properties of GdMnO3 systems induced by the substitution of Mn with Cr, polycrystalline GdMn1-xCrxO3 samples were synthesized via solid-state reactions. XRD characterization shows that all GdMn1-xCrxO3 compounds with single-phase structures crystallize well and that Cr3+ ions entering the lattice sites of GdMnO3 induce structural distortion. SEM results indicate that the grain size of the synthesized samples (a few microns) decreases as the Cr substitution concentration increases. Positron annihilation lifetime spectroscopy reveals that vacancy-type defects occur in GdMn1-xCrxO3 ceramics and that the vacancy size and concentration clearly change with the Cr content. The temperature and field dependence of the magnetization curves show that Cr substitution significantly influences the magnetic ordering of the gadolinium sublattice, improving the weak ferromagnetic transition temperature and magnetization of GdMn1-xCrxO3. The enhanced magnetization of GdMn1-xCrxO3 is closely related to the vacancy defect concentration.  相似文献   
2.
Synthetic active matters are perfect model systems for non-equilibrium thermodynamics and of great potential for novel biomedical and environmental applications. However, most applications are limited by the complicated and low-yield preparation, while a scalable synthesis for highly functional microswimmers is highly desired. In this paper, an all-solution synthesis method is developed where the gold-loaded titania-silica nanotree can be produced as a multi-functional self-propulsion microswimmer. By applying light, heat, and electric field, the Janus nanotree demonstrated multi-mode self-propulsion, including photochemical self-electrophoresis by UV and visible light radiation, thermophoresis by near-infrared light radiation, and induced-charge electrophoresis under AC electric field. Due to the scalable synthesis, the Janus nanotree is further demonstrated as a high-efficiency, low-cost, active adsorbent for water decontamination, where the toxic mercury ions can be reclaimed with enhanced efficiency.  相似文献   
3.
To evaluate the separate impacts on human health and establish effective control strategies, it is crucial to estimate the contribution of outdoor infiltration and indoor emission to indoor PM2.5 in buildings. This study used an algorithm to automatically estimate the long-term time-resolved indoor PM2.5 of outdoor and indoor origin in real apartments with natural ventilation. The inputs for the algorithm were only the time-resolved indoor/outdoor PM2.5 concentrations and occupants’ window actions, which were easily obtained from the low-cost sensors. This study first applied the algorithm in an apartment in Tianjin, China. The indoor/outdoor contribution to the gross indoor exposure and time-resolved infiltration factor were automatically estimated using the algorithm. The influence of outdoor PM2.5 data source and algorithm parameters on the estimated results was analyzed. The algorithm was then applied in four other apartments located in Chongqing, Shenyang, Xi'an, and Urumqi to further demonstrate its feasibility. The results provided indirect evidence, such as the plausible explanations for seasonal and spatial variation, to partially support the success of the algorithm used in real apartments. Through the analysis, this study also identified several further development directions to facilitate the practical applications of the algorithm, such as robust long-term outdoor PM2.5 monitoring using low-cost light-scattering sensors.  相似文献   
4.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
5.
The design of highly stable and efficient porous materials is essential for developing breakthrough hydrocarbon separation methods based on physisorption to replace currently used energy-intensive distillation/absorption technologies. Efforts to develop advanced porous materials such as zeolites, coordination frameworks, and organic polymers have met with limited success. Here, a new class of ionic ultramicroporous polymers (IUPs) with high-density inorganic anions and narrowly distributed ultramicroporosity is reported, which are synthesized by a facile free-radical polymerization using branched and amphiphilic ionic compounds as reactive monomers. A covalent and ionic dual-crosslinking strategy is proposed to manipulate the pore structure of amorphous polymers at the ultramicroporous scale. The IUPs exhibit exceptional selectivity (286.1–474.4) for separating acetylene from ethylene along with high thermal and water stability, collaboratively demonstrated by gas adsorption isotherms and experimental breakthrough curves. Modeling studies unveil the specific binding sites for acetylene capture as well as the interconnected ultramicroporosity for size sieving. The porosity-engineering protocol used in this work can also be extended to the design of other ultramicroporous materials for the challenging separation of other key gas constituents.  相似文献   
6.
7.
8.
Thermally conductive polymers offer new possibilities for the heat dissipation in electric and electronic components, for example, by a three‐dimensional shaping of the heat sinks. To face safety regulations, improved fire performance of those components is required. In contrast to unfilled polymers, those materials exhibit an entirely different thermal behavior. To investigate the flammability, a phosphorus flame retardant was incorporated into thermally conductive composites of polyamide 6 and hexagonal boron nitride. The flame retardant decreased the thermal conductivity only slightly. However, the burning behavior changed significantly, due to a different heat propagation, which was investigated using a thermographic camera. An optimum content of hexagonal boron nitride for a sufficient thermal conductivity and fire performance was found between 20 and 30 vol%. The improvement of the fire performance was due to a faster heat release out of the pyrolysis zone and an earlier decomposition of the flame retardant. For higher contents of hexagonal boron nitride, the heat was spread faster within the part, promoting an earlier ignition and increasing the decomposition rate of the flame retardant.  相似文献   
9.
10.
This study aimed to predict the optimal carbon source for higher production of exopolysaccharides (EPS) by Lactobacillus paracasei TD 062, and to evaluate the effect of this carbon source on the production and monosaccharide composition of EPS. We evaluated the EPS production capacity of 20 strains of L. paracasei under the same conditions. We further investigated L. paracasei TD 062, which showed the highest EPS-producing activity (0.609 g/L), by examining the associated biosynthesis pathways for EPS. Genomics revealed that fructose, mannose, trehalose, glucose, galactose, and lactose were carbon sources that L. paracasei TD 062 could use to produce EPS. We identified an EPS synthesis gene cluster that could participate in transport, export, and sugar chain synthesis, and generate 6 sugar nucleotides. Experimental results showed that the sugar content of the EPS produced using fermentation with the optimized carbon source (fructose, mannose, trehalose, glucose, galactose, and lactose) increased by 115%. Furthermore, use of the optimized carbon source changed the monosaccharide content of the associated EPS. The results of enzyme activity measurements showed significant increases in the activity of 2 key enzymes involved in the glycoside synthesis pathway. Our study revealed that optimizing the carbon source provided for fermentation not only increased the production of EPS, but also affected the composition of the monosaccharides by increasing enzyme activity in the underlying synthesis pathways, suggesting an important role for carbon source in the production of EPS by L. paracasei TD 062.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号