首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20469篇
  免费   1911篇
  国内免费   994篇
电工技术   1308篇
技术理论   4篇
综合类   1363篇
化学工业   3572篇
金属工艺   1010篇
机械仪表   1215篇
建筑科学   1806篇
矿业工程   517篇
能源动力   585篇
轻工业   1243篇
水利工程   368篇
石油天然气   1317篇
武器工业   161篇
无线电   2339篇
一般工业技术   2826篇
冶金工业   904篇
原子能技术   214篇
自动化技术   2622篇
  2024年   77篇
  2023年   380篇
  2022年   647篇
  2021年   983篇
  2020年   650篇
  2019年   597篇
  2018年   621篇
  2017年   663篇
  2016年   563篇
  2015年   772篇
  2014年   978篇
  2013年   1094篇
  2012年   1243篇
  2011年   1400篇
  2010年   1195篇
  2009年   1164篇
  2008年   1121篇
  2007年   1055篇
  2006年   1113篇
  2005年   960篇
  2004年   655篇
  2003年   609篇
  2002年   556篇
  2001年   456篇
  2000年   525篇
  1999年   547篇
  1998年   472篇
  1997年   434篇
  1996年   377篇
  1995年   348篇
  1994年   251篇
  1993年   202篇
  1992年   159篇
  1991年   94篇
  1990年   103篇
  1989年   107篇
  1988年   70篇
  1987年   33篇
  1986年   25篇
  1985年   19篇
  1984年   13篇
  1983年   8篇
  1982年   13篇
  1981年   7篇
  1980年   8篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
To investigate the evolution of the structural and enhanced magnetic properties of GdMnO3 systems induced by the substitution of Mn with Cr, polycrystalline GdMn1-xCrxO3 samples were synthesized via solid-state reactions. XRD characterization shows that all GdMn1-xCrxO3 compounds with single-phase structures crystallize well and that Cr3+ ions entering the lattice sites of GdMnO3 induce structural distortion. SEM results indicate that the grain size of the synthesized samples (a few microns) decreases as the Cr substitution concentration increases. Positron annihilation lifetime spectroscopy reveals that vacancy-type defects occur in GdMn1-xCrxO3 ceramics and that the vacancy size and concentration clearly change with the Cr content. The temperature and field dependence of the magnetization curves show that Cr substitution significantly influences the magnetic ordering of the gadolinium sublattice, improving the weak ferromagnetic transition temperature and magnetization of GdMn1-xCrxO3. The enhanced magnetization of GdMn1-xCrxO3 is closely related to the vacancy defect concentration.  相似文献   
2.
Synthetic active matters are perfect model systems for non-equilibrium thermodynamics and of great potential for novel biomedical and environmental applications. However, most applications are limited by the complicated and low-yield preparation, while a scalable synthesis for highly functional microswimmers is highly desired. In this paper, an all-solution synthesis method is developed where the gold-loaded titania-silica nanotree can be produced as a multi-functional self-propulsion microswimmer. By applying light, heat, and electric field, the Janus nanotree demonstrated multi-mode self-propulsion, including photochemical self-electrophoresis by UV and visible light radiation, thermophoresis by near-infrared light radiation, and induced-charge electrophoresis under AC electric field. Due to the scalable synthesis, the Janus nanotree is further demonstrated as a high-efficiency, low-cost, active adsorbent for water decontamination, where the toxic mercury ions can be reclaimed with enhanced efficiency.  相似文献   
3.
To evaluate the separate impacts on human health and establish effective control strategies, it is crucial to estimate the contribution of outdoor infiltration and indoor emission to indoor PM2.5 in buildings. This study used an algorithm to automatically estimate the long-term time-resolved indoor PM2.5 of outdoor and indoor origin in real apartments with natural ventilation. The inputs for the algorithm were only the time-resolved indoor/outdoor PM2.5 concentrations and occupants’ window actions, which were easily obtained from the low-cost sensors. This study first applied the algorithm in an apartment in Tianjin, China. The indoor/outdoor contribution to the gross indoor exposure and time-resolved infiltration factor were automatically estimated using the algorithm. The influence of outdoor PM2.5 data source and algorithm parameters on the estimated results was analyzed. The algorithm was then applied in four other apartments located in Chongqing, Shenyang, Xi'an, and Urumqi to further demonstrate its feasibility. The results provided indirect evidence, such as the plausible explanations for seasonal and spatial variation, to partially support the success of the algorithm used in real apartments. Through the analysis, this study also identified several further development directions to facilitate the practical applications of the algorithm, such as robust long-term outdoor PM2.5 monitoring using low-cost light-scattering sensors.  相似文献   
4.
In this study, C/SiOC and C/SiO2 composites were prepared by using carbonaceous microspheres with different surface functional groups. Carbonaceous microspheres based on hydrothermal reaction of glucose contains hydroxyl group, while the surface carboxyl group increases after NaOH etching. The hydroxyl group increases the oxygen-enriched structural units of SiOC ceramics, and the C spheres are closely enwrapped in SiOC matrix after pyrolysis at 900 °C. However, the interfacial reaction of surface carboxyl with Si–OH results in the formation of cristobalite SiO2, and C spheres are not only encased inside the SiOC matrix, but also dispersed outside of SiOC ceramics. After removal of C via calcination at 500 °C for 5 h, C/SiOC and C/SiO2 composites are transformed into amorphous SiO2 and cristobalite SiO2, respectively. The thermogravimetric analysis indicates the oxidation resistance of SiOC is superior to that of C and SiO2.  相似文献   
5.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
6.
Porous g-C3N4 nanosheets (PCN) were prepared by the nickel-assisted one-step thermal polymerization method.Hydrogen (H2) which was produced by the reaction between nickel (Ni) foam and ammonia (NH3) defined the structure and properties of PCN.During the formation of PCN,the participation of H2 not only enhanced the spacing between layers but also boosted the specific surface area that more active sites were exposed.Additionally,H2 promoted pores formation in the nanosheets,which was beneficial to the transfer of photons through lamellar structure and improved the absorption efficiency of visible light.Remarkably,the obtained PCN possessed better Cr(Ⅵ) photocatalytic reduction efficiency than pure g-C3N4.The reaction rate constant (k) of PCN (0.013 min-1) was approximately twice that of bare g-C3N4 (0.007 min-1).Furthermore,the effects of original pH and concentration of Cr(Ⅵ)-containing solution on removal efficiency of Cr(Ⅵ) were explored.A possible photocatalytic mechanism was proposed based on the experiments of radical scavengers and photoelectrochemical characterizations.  相似文献   
7.
目的:鉴定中国白酒发酵过程中的微生物种类,研究关键酶的特征与作用机制有利于提高白酒的优质品率。方法:本研究用形态学和生理学、16S rRNA、gyr B基因和antiSMASH分析的方法对酒曲中的一株微生物进行了验证;对该菌株的特性进行了研究,采用分子建模的方法获得了羧酸酯酶的3D模型,用分子对接的方法探讨了该菌株的羧酸酯酶的机理。结果:该菌株为产羧酸酯酶的革兰氏阴性菌Pb1(MW580690);该菌株呈现典型的S型生长曲线,产物曲线为S型,羧酸酯酶活化最优pH范围为5.0~9.0。分子对接结果显示Phe21A为该酶具有催化活性的主要氨基酸,水解三丁酸甘油酯为丁酸和甘油。分子对接结果显示三丁酸甘油酯经过构象变化被转移到催化中心后,进一步被加工;酶的亲水性和疏水性的相互作用表面有利于配体向下转移,进而从疏水性通道释放产物到的酶表面。结论:产羧酸酯酶的菌株为贝莱斯芽胞杆菌,并为羧酸酯酶水解三丁酸甘油酯类物质的底物识别、转移和催化机理提供了新的见解。  相似文献   
8.
The design of highly stable and efficient porous materials is essential for developing breakthrough hydrocarbon separation methods based on physisorption to replace currently used energy-intensive distillation/absorption technologies. Efforts to develop advanced porous materials such as zeolites, coordination frameworks, and organic polymers have met with limited success. Here, a new class of ionic ultramicroporous polymers (IUPs) with high-density inorganic anions and narrowly distributed ultramicroporosity is reported, which are synthesized by a facile free-radical polymerization using branched and amphiphilic ionic compounds as reactive monomers. A covalent and ionic dual-crosslinking strategy is proposed to manipulate the pore structure of amorphous polymers at the ultramicroporous scale. The IUPs exhibit exceptional selectivity (286.1–474.4) for separating acetylene from ethylene along with high thermal and water stability, collaboratively demonstrated by gas adsorption isotherms and experimental breakthrough curves. Modeling studies unveil the specific binding sites for acetylene capture as well as the interconnected ultramicroporosity for size sieving. The porosity-engineering protocol used in this work can also be extended to the design of other ultramicroporous materials for the challenging separation of other key gas constituents.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号