首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
电工技术   3篇
化学工业   1篇
能源动力   1篇
轻工业   1篇
无线电   7篇
一般工业技术   2篇
冶金工业   2篇
原子能技术   1篇
自动化技术   11篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2000年   1篇
  1997年   2篇
  1996年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
Bubbles and droplets both consist of a liquid in contact with a gas. In this paper, we consider the interface between the incompressible liquid and the gas as a zero thickness structure. The position of the interface is determined by the equilibrium between surface tension effects and the fluid pressure difference across the interface. So, the structure interacts with the fluids on either side. The behaviour of a limited number of bubbles and droplets can therefore be simulated as a Fluid-Structure Interaction (FSI) problem.Most existing techniques frequently used for studying bubble and droplet dynamics, such as Level Set or Volume Of Fluid, use monolithic schemes. The flow on both sides of the interface and the position of the interface are calculated in a single code. In this contribution, a partitioned approach is presented. The position of the interface is calculated with a structural solver. Given a displacement of the interface, a separate flow solver calculates the flow on the liquid side of the interface with the Arbitrary Lagrangian-Eulerian (ALE) technique. The structural solver uses a reduced order model of the flow solver to obtain implicit coupling between both solvers. This reduced order model is built up during the coupling iterations of a time step. Grid and time converged solutions of two axisymmetric problems are calculated: an oscillating water droplet in air and the growth and detachment of an air bubble from the outlet of a vertical needle, submerged in quiescent water.  相似文献   
2.
Characterization of the mechanical properties of arterial tissues is highly relevant. In this work, we apply an inverse modelling approach to a model accounting for an aneurysm and the distal part of the circulation which can be modified using two independent stiffness parameters. For given values of these parameters, the position of the arterial wall as a function of time is calculated using a forward simulation which takes the fluid-structure interaction (FSI) into account. Using this forward simulation, the correct values of the stiffness parameters are obtained by minimizing a cost function, which is defined as the difference between the forward simulation and a measurement. The minimization is performed by means of surrogate-based optimization using a Kriging model combined with the expected improvement infill criterion. The results show that the stiffness parameters converge to the correct values, both for a zero-dimensional and for a three-dimensional model of the aneurysm.  相似文献   
3.
Currently, the interaction between free surface flow and an elastic structure is simulated with monolithic codes which calculate the deformation of the structure and the liquid–gas flow simultaneously. In this work, this interaction is calculated in a partitioned way with a separate flow solver and a separate structural solver using the interface quasi-Newton algorithm with approximation for the inverse of the Jacobian from a least-squares model (IQN-ILS). The interaction between an elastic beam and a sloshing liquid in a rolling tank is calculated and the results agree well with experimental data. Subsequently, the impact of both a rigid cylinder and a flexible composite cylinder on a water surface is simulated to assess the effect of slamming on the components of certain wave-energy converters. The impact pressure on the bottom of the rigid cylinder is nearly twice as high as on the flexible cylinder, which emphasizes the need for fluid–structure interaction calculations in the design process of these wave-energy converters. For both the rolling tank simulations and the impact simulations, grid refinement is performed and the IQN-ILS algorithm requires the same number of iterations on each grid. The simulations on the coarse grid are also executed using Gauss-Seidel coupling iterations with Aitken relaxation which requires significantly more coupling iterations per time step.  相似文献   
4.
We present a method to obtain Si-fins with a critical dimension (CD) below 20 nm, separated by a minimum distance of 25 nm and connected by a common source/drain (S/D) pad. The method comprises of recursive spacer defined patterning to quadruple the line density of a 350 nm pitch resist pattern defined by 193 nm lithography. Spacer defined patterning is combined with resist based patterning to simultaneously define fins and S/D pads in a Silicon on Insulator (SOI) film. CD and Line Width Roughness (LWR) analysis was done on top down SEM images taken in a center die and in an edge die of a 200 mm wafer. The average CD is 17 nm in the center of the wafer and 18 nm at the edge. The LWR is 3 nm for both center and edge. Additional process steps to remove etch damage and round the top corner of the fin (i.e. oxidation followed by H2 anneal) further reduce the CD to 13 nm.  相似文献   
5.
This paper presents a detailed analysis of the rotor–tower interaction and the effects of the rotor's tilt angle and yaw misalignment on a large horizontal axis wind turbine. A high‐fidelity aeroelastic model is employed, coupling computational fluid dynamics (CFD) and structural mechanics (CSM). The wind velocity stratification induced by the atmospheric boundary layer (ABL) is modeled. On the CSM side, the complex composite structure of each blade is accurately modeled using shell elements. The rotor–tower interaction is analyzed by comparing results of a rotor‐only simulation and a full‐machine simulation, observing a sudden drop in loads, deformations, and power production of each blade, when passing in front of the tower. Subsequently, a tilt angle is introduced on the rotor, and its effect on blade displacements, loads, and performance is studied, representing a novelty with respect to the available literature. The tilt angle leads to a different contribution of gravity to the blade deformations, sensibly affecting the stresses in the composite material. Lastly, a yaw misalignment is introduced with respect to the incoming wind, and the resulting changes in the blade solicitations are analyzed. In particular, a reduction of the blade axial displacement amplitude during each revolution is observed.  相似文献   
6.
The presence of distributed generators in the distribution network results in an increase of the voltage magnitude close to these generators, during a fault elsewhere in the distribution system or in the transmission system. This voltage dip mitigation capability of converter-connected distributed generation (DG) units is dependent on the control strategy of the converter. To compare the influence of different types of converter-connected distributed generators on the voltage profile along distribution feeders during a fault, the quantity,“voltage ratio” is used. This voltage ratio is obtained by division of the voltage during the voltage dip by the voltage just before the voltage dip. The different converter types are modelled, and the influence on the voltage ratio is analysed.  相似文献   
7.
We used a multiphysics model to assess the accuracy of carotid strain estimates derived from a 1-D ultrasonic wall tracking algorithm. The presented tool integrates fluid-structure interaction (FSI) simulations with an ultrasound simulator (Field II), which allows comparison of the ultrasound (US) images with a ground truth. Field II represents tissue as random points on which US waves reflect and whose position can be updated based on the flow field and vessel wall deformation from FSI. We simulated the RF-signal of a patient-specific carotid bifurcation, including the blood pool as well as the vessel wall and surrounding tissue. Distension estimates were obtained from a wall tracking algorithm using tracking points at various depths within the wall, and further processed to assess radial and circumferential strain. The simulated data demonstrated that circumferential strain can be estimated with reasonable accuracy (especially for the common carotid artery and at the lumen-intima and media-adventitia interface), but the technique does not allow to reliably assess intra-arterial radial strain. These findings were supported by in vivo data of 10 healthy adults, showing similar circumferential and radial strain profiles throughout the arterial wall. We concluded that these deviations are present due to the complex 3-D vessel wall deformation, the presence of specular reflections and, to a lesser extent, the spatially varying beam profile, with the error depending on the phase in the cardiac cycle and the scanning location.  相似文献   
8.
In this research, a fluid–structure interaction (FSI) framework was established to estimate the velocity of a yarn as it is propelled by the main nozzle. To allow the methodology to be used in an optimization context, the computational time was limited as much as possible. The methodology was first validated on polymer coated yarns to avoid any influence of yarn hairiness. Results from the calculations were compared to experiments and adequate agreement was found without tuning. Subsequently, an extension to hairy yarns was made by representing the hairiness as a wall roughness. The roughness height was determined by matching the simulated to the experimental velocity for a single case. The approach was validated by applying the obtained roughness height to different setups and comparing the simulations to the corresponding experiments. Taking into account some limitations, the methodology can be applied for optimization purposes using either smooth or hairy yarns.  相似文献   
9.
High dose 166Er or 160Gd implantations are used to form rare-earth (RE) silicides in Si. After implanting 0.8−2.0 × 1017 at./cm2 with 90 keV into Si(111) substrates kept at 450 to 530°C, we found that using conventional non-channeled implantation (tilted over 7°), it is impossible to form a continuous RESi1.7 layer. On the contrary, using channeled implantation, a continuous epitaxial ErSi1.7 layer with very good crystalline quality can be synthesized; a lowest χmin value of 1.5% for a surface ErSi1.7 layer is obtained. This different behaviour is explained using a model based on the difference in implantation depth, defect density and sputtering yield between random and channeled implantation, and the results are compared with Monte Carlo simulations. Such a high-quality RESi1.7/Si system offers a rare opportunity to study the structure, orientation and strain comprehensively using Rutherford backscattering and channeling spectrometry, X-ray diffraction and TEM. We found that the azimuthal orientation of the hexagonal RESi1.7 layer to the cubic Si substrate is RESi1.7[0001]/t|Si[111] and RESi1.7{11 0}/t|Si{110}. It is further observed that the ErSi1.7 epilayer is compre strained and quasi-pseudomorphic. In the case of GdSi1.7, the most difficult rare-earth silicide to form, and enhanced stabilization of the hexagonal over the orthorhombic phase is observed.  相似文献   
10.
A microsomal GlcNAc-6-O-sulfotransferase activity from human bronchial mucosa, able to transfer a sulfate group from adenosine 3'-phosphate 5'-phosphosulfate onto methyl-N-acetylglucosaminides or terminal N-acetylglucosamine residues of carbohydrate chains from human respiratory mucins, has been characterized. The reaction products containing a terminal HO3S-6GlcNAc were identified by high performance anion-exchange chromatography. Using methyl-beta-N-acetylglucosaminide as a substrate, the optimal activity was obtained with 0.1% Triton X-100, 30 mM NaF, 20 mM Mn2+, 5 mM AMP in a 30 mM MOPS (3-(N-morpholino) propanesulfonic acid) buffer at pH 6.7. The apparent Km values for adenosine 3'-phosphate 5'-phosphosulfate and methyl-beta-N-acetylglucosaminide were observed at 9.1 x 10(-6) M and 0.54 x 10(-3) M, respectively. The enzyme had more affinity for carbohydrate chains with a terminal GlcNAc residue than for methyl-beta-N-acetylglucosaminide; it was unable to catalyze the transfer of sulfate to position 6 of the GlcNAc residue contained in a terminal Galbeta1-4GlcNAc sequence. However, oligosaccharides with a nonreducing terminal HO3S-6GlcNAc were substrates for a beta1-4 galactosyltransferase from human bronchial mucosa. These data point out that GlcNAc-6-O-sulfotransferase must act before beta1-4 galactosylation in mucin-type oligosaccharide biosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号