首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   2篇
电工技术   1篇
化学工业   1篇
水利工程   1篇
无线电   20篇
自动化技术   27篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2014年   3篇
  2013年   1篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1995年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
1.
The fact that a lot of applications require secure communication to take place only between a dynamic subset of distributed devices sharing a common context, is, from a network point of view, very challenging and demanding. Existing technologies such as VPN, P2P overlays or VLANs can only partially respond to these requirements. This observation is the key factor that has driven the proposal of the virtual private ad hoc network concept. Virtual private ad hoc networks (VPAN) are secure and self-organizing overlay networks on top of existing IP infrastructure that use ad hoc networking techniques to enable network connectivity. The underlying IP infrastructure can be the Internet, cellular networks, ad hoc networks, mesh networks … or combinations thereof. A virtual private ad hoc overlay network creates a transparent, shielded and trusted environment for the applications and services running on the participants' devices. The overlay uses internal addressing and ad hoc routing, thereby forming a virtual network on top of the physical infrastructure. In addition, the overlay must be self-organizing and self-maintaining upon member mobility or membership changes. This paper gives an overview of the potential applications, a high-level network architecture and the network challenges emerging from the novel concept of virtual private ad hoc networking. Jeroen Hoebeke was born in Ghent, Belgium in 1979. In 2002 he received the Masters degree in engineering (Computer Science) from the University of Ghent. In August 2002, he joined the Broadband Communications Networks Group. His PhD research includes the development of adaptive routing protocol techniques for mobile ad hoc networks. His main research interests are in ad hoc wireless communications and, more generally, in broadband wireless communications. Within the European MAGNET project, he is actively involved in the development of a network architecture and demonstrator for Personal Networks, with a prime focus on routing and connectivity. Gerry Holderbeke was born in Zottegem, Belgium in 1982. He graduated in Informatics at the University of Ghent in 2004. In August 2004 he joined the Broadband Communications Networks Group where he is currently working as a project developer. His research currently includes the development of an emulator for mobile ad hoc networks. His main research interests are in ad hoc networks and broadband wireless communications and involve routing, addressing and more generally, communication within mobile ad hoc networks and infrastructured networks. Within the European MAGNET project, he is actively involved in the development of a network architecture for Personal Networks, with a prime focus on the implementation of the routing architecture. Ingrid Moerman was born in Gent, Belgium in 1965. She received the degree in Electro-technical Engineering and the Ph.D degree from the Ghent University, Gent, Belgium in 1987 and 1992, respectively. Since 1987, she has been with the Interuniversity Micro-Electronics Centre (IMEC) at the Department of Information Technology (INTEC) of the Ghent University, where she conducted research in the field of optoelectronics. In 1997, she became a permanent member of the Research Staff at IMEC. Since 2000 she is part-time professor at the Ghent University. Since 2001 she has switched her research domain to broadband communication networks. She is currently involved in the research and education on broadband mobile & wireless communication networks and on multimedia over IP. The main research topics related to mobile & wireless communication networks are: wireless access to vehicles (high bandwidth & driving speed), adaptive QoS routing in wireless ad hoc networks, body area networks, protocol boosting on wireless links, design of fixed access/metro part, traffic engineering and QoS support in the wireless access network. Ingrid Moerman is author or co-author of more than 300 publications in the field of optoelectronics and communication networks. Bart Dhoedt received a degree in Engineering from the Ghent University in 1990. In September 1990, he joined the Department of Information Technology of the Faculty of Applied Sciences, University of Ghent. His research, addressing the use of micro-optics to realize parallel free space optical interconnects, resulted in a PhD degree in 1995. After a 2 year post-doc in opto-electronics, he became professor at the Faculty of Applied Sciences, Department of Information Technology. Since then, he is responsible for several courses on algorithms, programming and software development. His research interests are software engineering and mobile & wireless communications. Bart Dhoedt is author or co-author of approximately 70 papers published in international journals or in the proceedings of international conferences. His current research addresses software technologies for communication networks, peer-to-peer networks, mobile networks and active networks. Piet Demeester received the Masters degree in Electro-technical engineering and the Ph.D degree from the Ghent University, Gent, Belgium in 1984 and 1988, respectively. In 1992 he started a new research activity on broadband communication networks resulting in the IBCN-group (INTEC Broadband communications network research group). Since 1993 he became professor at the Ghent University where he is responsible for the research and education on communication networks. The research activities cover various communication networks (IP, ATM, SDH, WDM, access, active, mobile), including network planning, network and service management, telecom software, internetworking, network protocols for QoS support, etc. Piet Demeester is author of more than 300 publications in the area of network design, optimization and management. He is member of the editorial board of several international journals and has been member of several technical program committees (ECOC, OFC, DRCN, ICCCN, IZS, &).  相似文献   
2.
Currently many service providers offer their services on a private and proprietary hard- and software infrastructure. These infrastructures often share many similarities. Hence we believe a generic service management architecture, that allows service providers to offer a large array of different services on a single infrastructure or multiple providers to offer their services cooperatively, would provide many advantages over current silo-based approaches. Additionally, by allowing the distributed service management components to cooperate in a peer-to-peer overlay network, scalability and resilience of the system could be greatly improved.In this paper we propose an optimal algorithm, based on an integer linear programming (ILP) formulation, and several heuristics to support such a generic overlay-based service management architecture. More specifically, we propose algorithms for dynamically allocating server and network resources to a set of services and selecting a suitable service instance for each client. Service instances are placed on a set of servers, taking into account server resource constraints (e.g. CPU and memory). Unlike existing algorithms for this problem, those proposed in this paper also support service level agreements (SLAs), which take the form of Quality of Service demands such as transmission latency constraints and bandwidth requirements. The optimisation goal is to maximise the percentage of satisfied demand (answered requests) and minimise the total number of required overlay servers, while satisfying the SLAs and resource constraints. Additionally, we propose an extension that allows the algorithms to find overlay routing paths to improve the transmission latency for latency-sensitive services.Extensive simulations were performed to evaluate the performance and scalability of the heuristics. They showed that in many cases the heuristics perform close to optimal and they scale well in terms of network size.  相似文献   
3.
Unstretched films of natural rubber (NR) from Hevea brasiliensis were exposed to ozone flow of 15 ml min?1 from 4 to 300 min. The efficiency of reaction was determined by ozone consumption of NR films. Plots of reacted ozone mass versus film thickness show that the ozone penetration and the ozone reaction progressed into deeper layers (170 µm) than described in the literature (~0.5 µm). The previous proposed model based on viscometry measurements was corroborated by ozone consumption results. The effect of thickness on the O3/NR stoichiometric ratio indicated that the diffusion process that controls the ozonation in unstretched film does not consist of the boundary progression behind which all reactive sites have been saturated. Ozonation in unstretched rubber film, while being less efficient than ozonolysis in solution, does have a reaction efficiency of the same order of magnitude. NMR spectroscopy was used to characterise the products formed by ozonation. Copyright © 2004 Society of Chemical Industry  相似文献   
4.
Micromobility protocols such as Cellular IP, Hawaii and Hierarchical Mobile IP are developed to solve problems of high handoff latency and control overhead, which occur when Mobile IP is used in combination with frequent handoffs. Up to now, tree access network topologies are considered to evaluate the protocol performance. However, for reasons of robustness against link failures and load balancing, extra uplinks and mesh links in the topology are desired. This article makes a classification of several topology types and gives a model that points out to which extent the topology influences the protocol performance in terms of handoff latency and handoff packet loss. Simulations confirm the results calculated by the model. Performance metrics such as load balancing, end-to-end delay and robustness against link failures are also evaluated. The study points to several shortcomings of the existing micromobility protocols for different topology types. Several aspects of the studied handoff schemes, their advantages and drawbacks are identified. L. Peters is a Research Assistant of the Fund for Scientific Research – Flanders (F.W.O.-V., Belgium) Liesbeth Peters was born in Temse, Belgium, in 1978. She received her Master of Science degree in Electrotechnical Engineering from Ghent University, Gent, Belgium in 2001. Since August 2001, she has been working as a doctoral researcher with the Department of Information Technology (INTEC) of the Faculty of Applied Sciences, Ghent University, where she joined the Broadband Communications Networks Group. Since October 2002, she works there as a research assistant of the Fund for Scientific Research—Flanders (F.W.O.-V., Belgium). Her current research interests are in broadband wireless communication and the support of IP mobility in wired cum wireless networks. Ingrid Moerman was born in Gent, Belgium, in 1965. She received the degree in Electro-technical Engineering and the Ph.D degree from the Ghent University, Gent, Belgium in 1987 and 1992, respectively. Since 1987, she has been with the Interuniversity Micro-Electronics Centre (IMEC) at the Department of Information Technology (INTEC) of the Ghent University, where she conducted research in the field of optoelectronics. In 1997, she became a permanent member of the Research Staff at IMEC. Since 2000 she is part-time professor at the Ghent University. Since 2001 she has switched her research domain to broadband communication networks. She is currently involved in the research and education on broadband mobile & wireless communication networks and on multimedia over IP. Her main research interests related to mobile & wireless communication networks are: adaptive QoS routing in wireless ad hoc networks, personal networks, body area networks, wireless access to vehicles (high bandwidth & driving speed), protocol boosting on wireless links, design of fixed access/metro part, traffic engineering and QoS support in the wireless access network. Ingrid Moerman is author or co-author of more than 300 publications in the field of optoelectronics and communication networks. Bart Dhoedt received a degree in Engineering from the Ghent University in 1990. In September 1990, he joined the Department of Information Technology of the Faculty of Applied Sciences, University of Ghent. His research, addressing the use of micro-optics to realize parallel free space optical interconnects, resulted in a PhD degree in 1995. After a 2 year post-doc in opto-electronics, he became professor at the Faculty of Applied Sciences, Department of Information Technology. Since then, he is responsible for several courses on algorithms, programming and software development. His research interests are software engineering and mobile & wireless communications. Bart Dhoedt is author or co-author of more than 100 papers published in international journals or in the proceedings of international conferences. His current research addresses software technologies for communication networks, peer-to-peer networks, mobile networks and active networks. Piet Demeester finished his PhD thesis at the Department of Information Technology (INTEC) at the Ghent University in 1988. At the same department he became group leader of the activities on Metal Organic Vapour Phase Epitaxial growth for optoelectronic components. In 1992 he started a new research group on Broadband Communication Networks. The research in this field resulted in already more than 300 publications. In this research domain he was and is a member of several programme committees of international conferences, such as: ICCCN, the International Conference on Telecommunication Systems, OFC, ICC, and ECOC. He was Chairman of DRCN’98. In 2001 he was chairman of the Technical Programme Committee ECOC’01. He was Guest Editor of three special issues of the IEEE Communications Magazine. He is also a member of the Editorial Board of the Journals “Optical Networks Magazine” and “Photonic Network Communications”. He was a member of several national and international PhD thesis commissions. Piet Demeester is a member of IEEE (Senior Member), ACM and KVIV. His current research interests include: multilayer networks, Quality of Service (QoS) in IP-networks, mobile networks, access networks, grid computing, distributed software, network and service management and applications (supported by FWO-Vlaanderen, the BOF of the Ghent University, the IWT and the European Commission). Piet Demeester is currently full-time professor at the Ghent University, where he is teaching courses in Communication Networks. He has also been teaching in different international courses.  相似文献   
5.
When deploying Grid infrastructure, the problem of dimensioning arises: how many servers to provide, where to place them, and which network to install for interconnecting server sites and users generating Grid jobs? In contrast to classical optical network design problems, it is typical of optical Grids that the destination of traffic (jobs) is not known beforehand. This leads to so-called anycast routing of jobs. For network dimensioning, this implies the absence of a clearly defined (source, destination)-based traffic matrix, since only the origin of Grid jobs (and their data) is known, but not their destination. The latter depends not only on the state of Grid resources, including network, storage, and computational resources, but also the Grid scheduling algorithm used. We present a phased solution approach to dimension all these resources, and use it to evaluate various scheduling algorithms in two European network case studies. Results show that the Grid scheduling algorithm has a substantial impact on the required network capacity. This capacity can be minimized by appropriately choosing a (reasonably small) number of server site locations: an optimal balance can be found, in between the single server site case requiring a lot of network traffic to this single location, and an overly fragmented distribution of server capacity over too many sites without much statistical multiplexing opportunities, and hence a relatively large probability of not finding free servers at nearby sites.  相似文献   
6.
Multimedia Tools and Applications - Recording videos with smartphones at large-scale events such as concerts and festivals is very common nowadays. These videos register the atmosphere of the event...  相似文献   
7.
Remote rendering is a well-known solution to the issue of running high-performance applications requiring complex visualizations on less capable hardware/software platforms or when client access to the data source for visualization is undesired or prohibitive in terms of required bandwidth. Visualizing the output of these remote rendering applications is typically achieved through native applications or, when considering a browser environment, through plug-ins. In this paper, several solutions are presented that enable deployment of these applications on standard web browsers, even those from the pre-HTML5 era. The focus in this paper is on two specific use case scenarios, taking into account that the proposed solutions are generic enough to be applied to a range of similar applications. The technologies presented cover the entire range of sub-processes contained in a complete remote rendering solution, such as the establishment of interaction feedback channels and delivery of images as part of the rendering pipeline. Depending on factors such as application requirements, developer preferences, feature availability in the web browser or raw performance figures, a custom solution can be composed from the options discussed in this paper. This is illustrated by applying them to the two aforementioned use cases, each with specific requirements and challenges, and benchmarking these example setups in terms of performance. A comparison of advantages and disadvantages is presented to guide developers in applying the technologies under real-life conditions.  相似文献   
8.
Current remote display technologies for mobile thin clients convert practically all types of graphical content into sequences of images rendered by the client. Consequently, important information concerning the content semantics is lost. The present paper goes beyond this bottleneck by developing a semantic multimedia remote display. The principle consists of representing the graphical content as a real-time interactive multimedia scene graph. The underlying architecture features novel components for scene-graph creation and management, as well as for user interactivity handling. The experimental setup considers the Linux X windows system and BiFS/LASeR multimedia scene technologies on the server and client sides, respectively. The implemented solution was benchmarked against currently deployed solutions (VNC and Microsoft-RDP), by considering text editing and WWW browsing applications. The quantitative assessments demonstrate: (1) visual quality expressed by seven objective metrics, e.g., PSNR values between 30 and 42 dB or SSIM values larger than 0.9999; (2) downlink bandwidth gain factors ranging from 2 to 60; (3) real-time user event management expressed by network round-trip time reduction by factors of 4–6 and by uplink bandwidth gain factors from 3 to 10; (4) feasible CPU activity, larger than in the RDP case but reduced by a factor of 1.5 with respect to the VNC-HEXTILE.  相似文献   
9.
Due to the large amounts of data required to be processed by the typical Grid job, it is conceivable that the use of optical transport networks in Grid deployment (hence the term “Lambda Grid”) will increase. The exact topology of the interconnecting network is obtained by solving a dimensioning problem, and the outcome of this strongly depends on both the expected workload characteristics and Grid scheduling policy. Solving this combined scheduling and dimensioning problem using straightforward ILP modelling is cumbersome; however, for steady-state Grid operation, Divisible Load Theory (DLT) can yield scalable formulations of this problem. In this paper, the on-line hierarchical scheduling on a lambda Grid of workload approaching the Grid’s capacity in a two-tier Grid mode of operation is studied. A number of these algorithms are goal-driven, in the sense that target per-resource goals are obtained from the off-line solution to the Divisible Load model. We compare these on-line multiresource scheduling policies for different workloads, Grid interconnection topologies and Grid parameters. We show that these algorithms perform well in the studied scenarios when compared to a fully centralized scheduling algorithm.
Pieter ThysebaertEmail:
  相似文献   
10.
Distributed virtual environments and massively multiplayer online games in particular have been on the rise for several years now. They offer huge digital environments characterized by tens of thousands of users interacting with each other. Efficiently managing these online worlds requires scalable architectures to distribute the load over multiple servers and maintain a high Quality of Experience (QoE). This need will only increase as online virtual worlds become more and more popular. A traditional approach to improve the scalability of this type of system is to statically partition the virtual world in smaller segments called cells, each assigned to a dedicated server.In this paper a novel approach of dividing the virtual world into even smaller parts called microcells is introduced. Critical in this approach are the algorithms that manage the microcell allocation over the available servers. These algorithms must face a number of challenges and have as a central goal to keep the load experienced by the servers below a given threshold. On one hand, clustering interacting microcells on one server allows to limit the overall load by minimizing the communication overhead. On the other hand, locating too many microcells on one server may cause the load to violate the threshold value, resulting in an overload situation. In this paper we present a number of algorithms that determine the microcell allocation and runtime adaptations of the microcell allocation to optimize the deployment. We evaluate the microcell approach by studying the impact of the microcell size and the number of servers. The efficiency of the algorithms in terms of their ability to decrease the maximum server load and their capability to maintain an ideal deployment in dynamic environments is also studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号