首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112723篇
  免费   10615篇
  国内免费   5970篇
电工技术   7399篇
技术理论   7篇
综合类   8363篇
化学工业   17780篇
金属工艺   7013篇
机械仪表   7627篇
建筑科学   9120篇
矿业工程   3695篇
能源动力   2999篇
轻工业   7135篇
水利工程   2293篇
石油天然气   6274篇
武器工业   1027篇
无线电   13239篇
一般工业技术   12823篇
冶金工业   5140篇
原子能技术   1370篇
自动化技术   16004篇
  2024年   485篇
  2023年   1635篇
  2022年   3271篇
  2021年   4462篇
  2020年   3398篇
  2019年   2778篇
  2018年   3085篇
  2017年   3499篇
  2016年   3280篇
  2015年   4716篇
  2014年   5779篇
  2013年   6940篇
  2012年   7710篇
  2011年   8349篇
  2010年   7700篇
  2009年   7609篇
  2008年   7251篇
  2007年   6958篇
  2006年   6465篇
  2005年   5618篇
  2004年   3874篇
  2003年   3403篇
  2002年   3298篇
  2001年   2987篇
  2000年   2467篇
  1999年   2478篇
  1998年   1792篇
  1997年   1540篇
  1996年   1355篇
  1995年   1111篇
  1994年   934篇
  1993年   672篇
  1992年   526篇
  1991年   405篇
  1990年   326篇
  1989年   278篇
  1988年   210篇
  1987年   136篇
  1986年   128篇
  1985年   58篇
  1984年   63篇
  1983年   40篇
  1982年   43篇
  1981年   34篇
  1980年   29篇
  1979年   20篇
  1978年   13篇
  1977年   9篇
  1976年   20篇
  1951年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Feng  Wenran  Li  Zhen  Chen  Yingying  Chen  Jinyang  Lang  Haoze  Wan  Jianghong  Gao  Yan  Dong  Haitao 《Journal of Materials Science》2022,57(3):1881-1889
Journal of Materials Science - Although chalcogenide materials continue to generate considerable interest due to great potentials for various optoelectronic devices, annealing for a long time in...  相似文献   
2.
3.
4.
A digital light processing (DLP) technology has been developed for 3D printing lead-free barium titanate (BTO) piezoelectric ceramics. By comparing the curing and rheological properties of slurries with different photosensitive monomer, a high refractive index monomer acryloyl morpholine (ACMO) was chosen, and a design and preparation method of BTO slurry with high solid content, low viscosity and high curing ability was proposed. By further selecting the printing parameters, the single-layer exposure time was reduced and the forming efficiency has been greatly improved. Sintered specimens were obtained after a nitrogen-air double-step debinding and furnace sintering process, and the BTO ceramics fabricated with 80 wt% slurry shows the highest relative density (95.32 %) and piezoelectric constant (168.1 pC/N). Furthermore, complex-structured BTO ceramics were prepared, impregnated by epoxy resin and finally assembly made into hydrophones, which has significance for the future design and manufacture of piezoelectric ceramic-based composites that used in functional devices.  相似文献   
5.
To provide a basis for the high-temperature oxidation of ultra-high temperature ceramics (UHTCs), the oxidation behavior of Zr3[Al(Si)]4C6 and a novel Zr3[Al(Si)]4C6-ZrB2-SiC composite at 1500 °C were investigated for the first time. From the calculation results, the oxidation kinetics of the two specimens follow the oxidation dynamic parabolic law. Zr3[Al(Si)]4C6 exhibited a thinner oxide scale and lower oxidation rate than those of the composite under the same conditions. The oxide scale of Zr3[Al(Si)]4C6 exhibited a two-layer structure, while that of the composite exhibited a three-layer structure. Owing to the volatilization of B2O3 and the active oxidation of SiC, a porous oxide layer formed in the oxide scale of the composite, resulting in the degradation of its oxidation performance. Furthermore, the cracks and defects in the oxide scale of the composite indicate that the reliability of the oxide scale was poor. The results support the service temperature of the obtained ceramics.  相似文献   
6.
Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials.  相似文献   
7.
Multimedia Tools and Applications - Since Noar and Shamir introduced visual cryptography scheme (VCS), the cheating problem of VCS has absorbed much attention of scholars. The current researches on...  相似文献   
8.
Composites based on hafnium carbide and reinforced with continuous naked carbon fiber with and without PyC interface were prepared at low temperature by precursor infiltration and pyrolysis and chemical vapor deposition method. The microstructure, mechanical property, cyclic ablation and fiber bundle push-in tests of the composites were investigated. The results show that after three times ablation cycles, the bending strength of samples without PyC interface decreased by 63.6 %; the bending strength of samples with PyC interface only decreased by 37.8 %. The force displacement curve of the samples with PyC interface presented a well pseudoplastic deformation state. The mechanical behavior difference of two kinds of composites was due to crucial function of PyC interface phase including protection of fiber and weakening of fiber/matrix interface.  相似文献   
9.
Ultrawide band gap semiconductor materials have attracted considerable attention in recent years owing to their great potential in the photocatalytic field. In this study, Zn-doped Ga2O3 nanofibers with various concentrations were synthesized via electrospinning; they exhibited a superior photocatalytic degradation performance of rhodamine B dye compared to that of undoped Ga2O3 nanofibers. The Zn dopant replaced Ga sites via replacement doping, which could increase the concentration of oxygen vacancies and lead to enhanced photocatalytic properties. When the Zn concentration increased, a Ga2O3/ZnGa2O4 hybrid structure formed, which could further enhance the photocatalytic performance. The separation of photogenerated carriers due to Zn doping and heterojunctions were the primary causes of the enhanced photocatalytic performance. This study provides experimental data for the fabrication of high-performance photocatalysts based on Ga2O3 nanomaterials.  相似文献   
10.
The recycling of solid waste is a win-win solution for humans and nature. For this purpose, magnesite tailings and silicon kerf waste were employed to prepare MgO–Mg2SiO4 composite ceramics by solid-state reaction synthesis in the present work. Then, effects of sintering temperature and raw material ratio on as-prepared ceramics were systematically studied. As-prepared ceramics showed improvement in their relative density (from 47.55%–68.12% to 90.96%–95.25%) and cold compressive strength (from 7.34–118.66 MPa to 303.39–546.65 MPa) with the increase in sintering temperature from 1300 to 1600 °C. In addition, it was found that Si promoted synthesis process of Mg2SiO4 phase through transient liquid phase sintering and Fe2O3 accelerated sintering process through activation sintering. Consequently, the presence of Mg2SiO4 phase effectively improved the density and strength of MgO–Mg2SiO4 composite ceramic, while reducing its thermal conductivity. This work provides a potential reutilization strategy for magnesite tailings, and as-prepared products are expected to be applied in fields of construction, metallurgy, and chemical industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号