首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
无线电   1篇
自动化技术   1篇
  2005年   1篇
  2003年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
A new learning system called a statistical self-organizing learning system (SSOLS), combining functional-link neural networks, statistical hypothesis testing, and self-organization of a number of enhancement nodes, is introduced for remote sensing applications. Its structure consists of two stages, a mapping stage and a learning stage. The input training vectors are initially mapped to the enhancement vectors in the mapping stage by multiplying with a random matrix, followed by pointwise nonlinear transformations. Starting with only one enhancement node, the enhancement layer incrementally adds an extra node in each iteration. The optimum dimension of the enhancement layer is determined by using an efficient leave-one-out cross-validation method. In this way, the number of enhancement nodes is also learned automatically. A t-test algorithm can also be applied to the mapping stage to mitigate the effect of overfitting and to further reduce the number of enhancement nodes required, resulting in a more compact network. In the learning stage, both the input vectors and the enhancement vectors are fed into a least squares learning module to obtain the estimated output vectors. This is made possible by choosing the output layer linear. In addition, several SSOLSs can be trained independently in parallel to form a consensual SSOLS, whose final output is a linear combination of the outputs of each SSOLS module. The SSOLS is simple, fast to compute, and suitable for remote sensing applications, especially with hyperspectral image data of high dimensionality.  相似文献   
2.
Recursive Update Algorithm for Least Squares Support Vector Machines   总被引:1,自引:0,他引:1  
In this Letter an efficient recursive update algorithm for least squares support vector machines (LSSVMs) is developed. Using the previous solution and some matrix equations, the algorithm completely avoids training the LSSVM all over again whenever new training sample is available. The gain in speed using the recursive update algorithm is illustrated on four data sets from UCI repository: the Statlog Australian credit, the Pima Indians diabetes, the Wisconsin breast cancer, and the adult income data sets.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号