首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
电工技术   1篇
化学工业   3篇
能源动力   4篇
无线电   1篇
冶金工业   1篇
自动化技术   3篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2011年   1篇
  2008年   2篇
  2007年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1976年   1篇
排序方式: 共有13条查询结果,搜索用时 328 毫秒
1.
The efficacy of composite Li-ion battery cathodes made by mixing active materials that possessed either high-rate capability or high specific energy was examined. The cathode structures studied contained carbon-coated LiFePO4 and either Li[Li0.17Mn0.58Ni0.25]O2 or LiCoO2. These active materials were arranged using three different electrode geometries: fully intermixed, fully separated, or layered. Discharge rate studies, cycle-life evaluation, and electrochemical impedance spectroscopy studies were conducted using coin cell test structures containing Li-metal anodes. Results indicated that electrode configuration was correlated to rate capability and degree of polarization if there was a large differential between the rate capabilities of the two active material species.  相似文献   
2.
Multimedia Tools and Applications - The Real time monitoring of forest area, coastal regions, sea, river basins, nation borders etc. helps in quick determination of devastations caused by natural...  相似文献   
3.
The corrosion behaviour of weld metal, partially melted zones and heat affected zones of gas tungsten arc welds in A356 Al-Si alloy with different prior thermal tempers has been studied. Continuous and pulsed current gas tungsten arc welding techniques were used. Potentiodynamic polarization testing was carried out to determine the corrosion resistance. Optical and scanning electron microscopy studies were carried out to determine the corrosion mechanism. The partially melted zone of the welds was found to be attacked severely. A pulsing technique was found to decrease the severity of corrosion damage in the partially melted zone. The prior thermal condition of the alloys was found to influence the corrosion of heat affected zones of welds.  相似文献   
4.
Much of the research on lithium-ion cathodes consisting of layered solid solutions of Li2MnO3-LiMO2 (M = Mn, Co, Ni) has focused on identifying the causes of the irreversible capacity loss on the first cycle. However, a key issue that must be addressed is whether the high irreversible capacity observed seen on the first cycle is associated with intercalated lithium at the anode, or if it is associated with irretrievable capacity (i.e., film formation, and/or decomposition reactions). To this end, we have quantified the amount of utilizable lithium that is made available for the anodes when employing Li2MnO3-LiMO2 as cathodes. Using a MoS2 anode lithiation plateau transition as a reference point to the amount of lithium transferred to the anode during charge, it has been shown that almost none of the cathode irreversible charge capacity resulted in lithiation of the anode. Further, by reacting charged graphitic anodes that were retrieved from C anode-Li1.2Ni0.175Co0.1Mn0.52O2 cathode cells with water to generate H2 gas to measure the active amount of lithium in the anode, we confirmed the results with the MoS2 titration experiments, demonstrating that lithium released from the cathode during the first charge is not proportionate to the cathode charge capacity.  相似文献   
5.
6.
For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn2O4-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16–20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF6 in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at −60 °C using a C/20 discharge rate with cells containing 1.0 M LiPF6 in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF6 in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at −40 °C, while still maintaining a voltage >2.5 V at 100 and 80% state-of-charge (SOC).  相似文献   
7.
In order to circumvent the corrosion problems prevalent in many existing electrochemical couples using the Na/-alumina half cell, a new class of high energy density organic materials was studied as cathode materials. In particular, one material tetracyanoethylene (TCNE), has favourable electrochemical characteristics with a potential >3.0 V against Na+/Na and energy density 620 Wh kg–1. Adopting a cell designed to permit sealing the anode half cell, the performance of TCNE was evaluated under various experimental conditions, that is, at different concentrations of TCNE in the catholyte and with different current collectors. The electrochemical behaviour of the TCNE cathode and the kinetics of TCNE reduction were examined. The kinetic parameters, exchange current density and diffusion coefficient, were determined from different a.c. and d.c. electrochemical techniques and evaluated with respect to the changes in TCNE concentrations in the catholyte. A chemical transformation occurring in the cell operating conditions which does not reduce the electrochemical activity of TCNE was identified from FTIR spectra. Finally, possible approaches to the use of TCNE or other organic materials in sodium or lithium rechargeable batteries are outlined.  相似文献   
8.
Lithium-ion batteries have started replacing the conventional aqueous nickel-based battery systems in space applications, such as planetary landers, rovers, orbiters and satellites. The reasons for such widespread use of these batteries are the savings in mass and volume of the power subsystems, resulting from their high gravimetric and volumetric energy densities, and their ability to operate at extreme temperatures. In our pursuit to further enhance the specific energy as well as low-temperature performance of Li-ion batteries, we have been investigating various layered lithiated metal oxides, e.g., LiCoO2, LiNi0.8Co0.2 and LiNi0.8Co0.15Al0.05O2, as well as different low-temperature electrolytes, including ternary and quaternary carbonate mixtures with various co-solvents. In this paper, we report our recent studies on Li1+x(Co1/3Ni1/3Mn1/3)1−xO2 cathodes, combined with three different low-temperature electrolytes, i.e.: (1) 1.0 M LiPF6 in EC:EMC (20:80), (2) 1.2 M LiPF6 in EC:EMC (20:80) and (3) 1.2 M LiPF6 in EC:EMC (30:70). Electrical performance characteristics were determined in laboratory glass cells at different discharge rates and different temperatures. Further, individual electrode kinetics of both Li1+x(Co1/3Ni1/3Mn1/3)1−xO2 cathodes and MCMB graphite anodes were determined at different temperatures, using dc micropolarization, Tafel polarization and electrochemical impedance spectroscopy (EIS). Analysis of these data has led to interesting trends relative to the effects of solvent composition and salt concentration, on the electrical performance and on the kinetics of cathode and anode.  相似文献   
9.
Multimedia Tools and Applications - Rainy weather greatly affects the visibility of salient objects and scenes in the captured images and videos. The object/scene visibility varies with the type of...  相似文献   
10.
The characteristics of the passive films over Mg anodes, which essentially govern the voltage delay of the latter, have been determined non-destructively from an analysis of the transient and steady-state response of the electrode potential to low-amplitude galvanostatic polarization under various experimental conditionsviz., with different corrosion inhibitor coatings on Mg, after various periods of ageing of anode in solutions containing corrosion inhibitors, at various low temperatures etc. Using these parameters, the kinetics of film build-up or dissolution under these conditions have been monitored. The morphology of the anode film has been predicted from a combination of potential-time transients at low c.d.s and delay-time curves during ageing and verified with scanning electron microscopy. Similar transients at low temperatures point out a steep rise in the film resistivity which is essentially responsible for the severe voltage delay. Finally, possible application of this technique in secondary Li batteries to improve cycling characteristics of the Li anode has been pointed out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号