首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   392篇
  免费   26篇
电工技术   3篇
化学工业   91篇
金属工艺   13篇
机械仪表   13篇
建筑科学   13篇
能源动力   39篇
轻工业   43篇
水利工程   1篇
石油天然气   2篇
无线电   18篇
一般工业技术   53篇
冶金工业   65篇
原子能技术   12篇
自动化技术   52篇
  2024年   2篇
  2023年   7篇
  2022年   11篇
  2021年   19篇
  2020年   12篇
  2019年   10篇
  2018年   16篇
  2017年   26篇
  2016年   18篇
  2015年   10篇
  2014年   23篇
  2013年   40篇
  2012年   19篇
  2011年   31篇
  2010年   27篇
  2009年   24篇
  2008年   20篇
  2007年   24篇
  2006年   9篇
  2005年   7篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   11篇
  1997年   9篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有418条查询结果,搜索用时 15 毫秒
1.
2.
3.
The majority of pituitary tumors are of monoclonal origin; however, the molecular basis for their formation is poorly understood. Somatic mutations in the alpha-subunit of the GTP-binding protein, Gs alpha (gsp oncogene) have been found in about one third of GH-secreting tumors. Mutations in another alpha-subunit of a GTP-binding protein, Gi2 alpha (gip mutations) have been described in other endocrine tumors. In this study, we examined 21 nonfunctioning pituitary tumors and 4 macroprolactinomas for gsp mutations and 27 nonfunctioning tumors and 4 macroprolactinomas for gip mutations. Using the polymerase chain reaction and denaturing gradient gel electrophoresis, 2 nonfunctioning pituitary tumors displayed migration abnormalities when the Gs alpha-gene was analyzed. Sequence analysis of these abnormally migrating polymerase chain reaction products revealed two previously known gsp mutations: arginine at codon 201 altered to cysteine, and glutamine at codon 227 changed to leucine. No gip mutations could be demonstrated. These findings emphasize the monoclonal origin of nonfunctioning pituitary tumors and suggest that cAMP may play a role in tumorigenesis of nonfunctioning pituitary tumors.  相似文献   
4.
In the presented study, the structural, thermal, and mechanical properties of the nanocomposites were investigated by doping silanized hexagonal boron carbide (h-B4C) nanoparticles in varying proportions (0.5%, 1%, 2%, 3%, 4%, and 5%) into the epoxy resin by weight. For this purpose, the surfaces of h-B4C nanoparticles were silanized by using 3-(glycidyloxypropyl) trimethoxysilane (GPS) to improve adhesion between h-B4C nanoparticles and epoxy matrix. Then, the silanized nanoparticles were added to the resin by ultrasonication and mechanical stirring techniques to produce nanocomposites. The bond structure differences of silanized B4C nanoparticles (s-B4C) and nanoparticle doped composites were investigated by using Fourier transform infrared spectroscopy. Scanning electron microscopy and energy dispersion X-ray spectroscopy (SEM-EDS) technique was used to examine the distribution of nanoparticles in the modified nanocomposites. Differential scanning calorimetry and thermogravimetric analysis techniques were used to determine the thermal properties of the neat and s-B4C doped nanocomposites. The tensile test and dynamic mechanical analysis were performed to determine the mechanical properties. When the experimental results were examined, changes in the bonding structure of the s-B4C nanoparticles doped nanocomposites and significant improvements in the mechanical and thermal properties were observed. The optimum doping ratio was determined as 2% by weight. At this doping ratio, the Tg, tensile strength and storage modulus increased approximately 18%, 35%, and 44% compared to the neat composite, respectively.  相似文献   
5.
Poly(N-methylaniline) (PNMA) coatings have been electropolymerized on 304 stainless steel alloy by potentiodynamic, galvanostatic and potentiostatic synthesis techniques from aqueous solutions of 0.1 M N-methylaniline (NMA) and 0.3 M oxalic acid. Characterization of PNMA coatings was carried out by cyclic voltammetry, UV-Vis and FTIR spectroscopy techniques. Corrosion behavior of PNMA coated stainless steel electrodes was investigated using linear anodic potentiodynamic polarization, Tafel test, chronoamperometry and electrochemical impedance spectroscopy (EIS) techniques in 0.5 M aqueous HCl solutions. Corrosion test results showed that PNMA coatings possessed protection to uncoated stainless steel against corrosion.  相似文献   
6.
In this article, two field experiments, conducted in an automotive assembly plant, evaluate how computer‐based training of operational sequences and related quality information can support the assembly performance of the operators. The experiments were performed during the launch of a new vehicle. A comparison was made of learning progress and quality performance between a reference group of operators that only had regular training and a test group for which some of the regular training was replaced with individual computer‐based training. Both quantitative measures of the quality output and questionnaires and observations were used to evaluate the effects of computer‐based training. The results show a clear positive difference in learning progress and improvements in quality output for the test group compared with the reference group. This combined with positive attitudes expressed by the operators and their team leaders shows that this type of training is an effective way to train operators during launches of new vehicles in automotive production.  相似文献   
7.
Failure mode and effects analysis (FMEA) is one of the well-known techniques of quality management that is used for continuous improvements in product or process designs. While applying this technique, determining the risk priority numbers, which indicate the levels of risks associated with potential problems, is of prime importance for the success of application. These numbers are generally attained from past experience and engineering judgments, and this way of risk assessment sometimes leads to inaccuracies and inconsistencies during priority numbering. Fuzzy logic approach is preferable in order to remove these deficiencies in assigning the risk priority numbers. In this study, a fuzzy-based FMEA is to be applied first time to improve the purchasing process of a public hospital. Results indicate that the application of fuzzy FMEA method can solve the problems that have arisen from conventional FMEA, and can efficiently discover the potential failure modes and effects. It can also provide the stability of process assurance.  相似文献   
8.
In this study, effects of embossing temperature, time, and force on production of a microfluidic device were investigated. Polymethyl methacrylate (PMMA) substrates were hot embossed by using a micromilled aluminum mold. The process parameters were altered to observe the variation of replication rate in width and depth as well as symmetry of the replicated microfluidic channels. Analysis of variance (ANOVA) on the experimental results indicated that embossing temperature was the most important process parameter, whereas embossing time and force have less impact. One distinguishing aspect of this study is that, the channels were observed to be skewed to either side of the channel depending on the location of the protrusions on the mold. The mechanism of the skewness was investigated by finite element analysis and discussed in detail. Results showed that the skewness depends on the flow characteristics of the material and could be reduced by increasing the embossing temperature. The best replication rates were obtained at parameter settings of 115°C, 10?kN, and 8?min for the molds with minimum 56?µm wide features of 120?µm depth. We also showed that the fabricated channels could be successfully sealed by solvent-assisted thermo-compressive bonding at 85°C under 5.5?kN force.  相似文献   
9.
In this study, Y3+ ion-substituted M-type barium hexaferrites (BaM; BaFe12O19) were fabricated via facile ceramic route. As-prepared powders were characterized by X-ray powder diffractometry (XRD), Fourier transform infrared (FT-IR) spectroscopy, and impedance spectroscopy. XRD (Rietveld) analyses confirmed the presence of a single characterization of all samples (except x = 0.0 and 0.1 samples). The crystallite sizes of products are found in the range of 47.2–63.2 nm. Spectral analysis (FT-IR) also presented the formation of spinel structure for all products. The ac conductivity of the substituted samples was found to initially decrease slightly with increase in Y3+ compared with unsubstituted, and then variation tendency changes at the medium substitution ranges are observed with a different attitude against temperature. In the end, the lower conductivity for high substitutions is recorded and increases as functions of frequency while it also increases with the elevation of temperature. It was observed that ac conductivities of products increased by increasing frequency which indicate that observed ac conductivity is due to both electronic and polaron hopping mechanism.  相似文献   
10.
This paper presents a new hybrid optimization approach based on immune algorithm and hill climbing local search algorithm. The purpose of the present research is to develop a new optimization approach for solving design and manufacturing optimization problems. This research is the first application of immune algorithm to the optimization of machining parameters in the literature. In order to evaluate the proposed optimization approach, single objective test problem, multi-objective I-beam and machine-tool optimization problems taken from the literature are solved. Finally, the hybrid approach is applied to a case study for milling operations to show its effectiveness in machining operations. The results of the hybrid approach for the case study are compared with those of genetic algorithm, the feasible direction method and handbook recommendation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号