首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12062篇
  免费   1372篇
  国内免费   972篇
电工技术   621篇
综合类   727篇
化学工业   1149篇
金属工艺   1099篇
机械仪表   446篇
建筑科学   269篇
矿业工程   90篇
能源动力   78篇
轻工业   172篇
水利工程   32篇
石油天然气   107篇
武器工业   86篇
无线电   1844篇
一般工业技术   1788篇
冶金工业   2338篇
原子能技术   63篇
自动化技术   3497篇
  2024年   81篇
  2023年   276篇
  2022年   449篇
  2021年   519篇
  2020年   427篇
  2019年   303篇
  2018年   295篇
  2017年   343篇
  2016年   334篇
  2015年   356篇
  2014年   533篇
  2013年   657篇
  2012年   653篇
  2011年   1021篇
  2010年   720篇
  2009年   770篇
  2008年   797篇
  2007年   801篇
  2006年   746篇
  2005年   723篇
  2004年   647篇
  2003年   512篇
  2002年   453篇
  2001年   379篇
  2000年   236篇
  1999年   184篇
  1998年   164篇
  1997年   158篇
  1996年   139篇
  1995年   128篇
  1994年   110篇
  1993年   94篇
  1992年   70篇
  1991年   39篇
  1990年   52篇
  1989年   44篇
  1988年   41篇
  1987年   9篇
  1986年   15篇
  1985年   13篇
  1984年   10篇
  1983年   8篇
  1981年   6篇
  1979年   6篇
  1977年   11篇
  1976年   5篇
  1975年   6篇
  1973年   5篇
  1963年   5篇
  1961年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
死亡风险预测指根据病人临床体征监测数据来预测未来一段时间的死亡风险。对于ICU病患,通过死亡风险预测可以有针对性地对病人做出临床诊断,以及合理安排有限的医疗资源。基于临床使用的MEWS和Glasgow昏迷评分量表,针对ICU病人临床监测的17项生理参数,提出一种基于多通道的ICU脑血管疾病死亡风险预测模型。引入多通道概念应用于BiLSTM模型,用于突出每个生理参数对死亡风险预测的作用。采用Attention机制用于提高模型预测精度。实验数据来自MIMIC [Ⅲ]数据库,从中提取3?080位脑血管疾病患者的16?260条记录用于此次研究,除了六组超参数实验之外,将所提模型与LSTM、Multichannel-BiLSTM、逻辑回归(logistic regression)和支持向量机(support vector machine, SVM)四种模型进行了对比分析,准确率Accuracy、灵敏度Sensitive、特异性Specificity、AUC-ROC和AUC-PRC作为评价指标,实验结果表明,所提模型性能优于其他模型,AUC值达到94.3%。  相似文献   
2.
《Ceramics International》2022,48(13):18151-18156
The electrical properties and domain reversal in BiFeO3 ferroelectric films were studied using sandwiched heterostructures and piezoresponse force microscopy. A robust polarization state was observed, combined with a switchable domain pattern and a remanent polarization of approximately 100 μC cm?2. In addition, domain reversal was explored using scanning probe microscopy. The results show that dipoles could be reversed along the direction of the electric field under a negative tip bias, leading to carrier gathering near the domain walls. The enhanced conductivity near the domain walls was owing to the discontinuous polarization boundary conditions. In addition, typical diode-like current transport properties are sensitive to various temperature conditions, which is attributed to the Schottky barriers at the contact interface. These findings extend the current understanding of domain texture reversal in ferroelectric films and shed light on their potential applications for future ferroelectric random-access memory operations over a wide temperature range.  相似文献   
3.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
4.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
5.
Sialidase cleaves sialic acid residues from glycans such as glycoproteins and glycolipids. In the brain, desorption of the sialic acid by sialidase is essential for synaptic plasticity, learning and memory and synaptic transmission. BTP3-Neu5Ac has been developed for sensitive imaging of sialidase enzyme activity in mammalian tissues. Sialidase activity in the rat hippocampus detected with BTP3-Neu5Ac increases rapidly by neuronal depolarization. It is presumed that an increased sialidase activity in conjunction with neural excitation is involved in the formation of the neural circuit for memory. Since sialidase inhibits the exocytosis of the excitatory neurotransmitter glutamate, the increased sialidase activity by neural excitation might play a role in the negative feedback mechanism against the glutamate release. Mammalian tissues other than the brain have also been stained with BTP3-Neu5Ac. On the basis of information on the sialidase activity imaging in the pancreas, it was found that sialidase inhibitor can be used as an anti-diabetic drug that can avoid hypoglycemia, a serious side effect of insulin secretagogues. In this review, we discuss the role of sialidase in the brain as well as in the pancreas and skin, as revealed by using a sialidase activity imaging probe. We also present the detection of influenza virus with BTP3-Neu5Ac and modification of BTP3-Neu5Ac.  相似文献   
6.
《Ceramics International》2022,48(14):20062-20069
Photocatalytic N2 fixation is a promising and sustainable manufacturing process of ammonia (NH3); however, the NH3 production rate by this method is very low, thus severely restricting further application of this sustainable technology. Therefore, developing an efficient photocatalyst for N2 fixation under mild conditions is urgently required. Herein, ferroelectric Bi2WO6 materials with different surface oxygen defects were prepared, and the concentration of corresponding defects was controlled by adjusting the thermal reduction time. The abundant oxygen defects in Bi2WO6 can provide more reactive sites to promote the effective adsorption of N2, and the photogenerated charge carrier can be efficiently separated benefiting from the internal electric field. These would weaken the N2 triple bond and reduce the activation energy barrier for the conversion of N2 to NH3 under mild conditions. In the absence of sacrificial agents and cocatalysts, the optimized Bi2WO6 with oxygen defects shows an indigenous NH3 yield of 132.175 μmol·g-1·L-1·h-1, which is more than two times higher than that of the original Bi2WO6. Surprisingly, the Bi2WO6 with oxygen defects produced more than eight times NH3 (471.13 μmol·g-1·L-1·h-1) than that of the original Bi2WO6 when assisted by an external magnetic field, thus providing a new perspective for further enhancing the N2 fixation performance.  相似文献   
7.
《Ceramics International》2020,46(4):4148-4153
The ferroelectric photovoltaic (FPV) effect obtained in inorganic perovskite ferroelectric materials has received much attention because of its large potential in preparing FPV devices with superior stability, high open-circuit voltage (Voc) and large short-circuit current density (Jsc). In order to obtain suitable thickness for the ferroelectric thin film as light absorption layer, in which, the sunlight can be fully absorbed and the photo-generated electrons and holes are recombined as few as possible, we prepare Pb0.93La0.07(Zr0.6Ti0.4)0.9825O3 (PLZT) ferroelectric thin films with different layer numbers by the sol-gel method and based on these thin films, obtain FPV devices with FTO/PLZT/Au structure. By measuring photovoltaic properties, it is found that the device with 4 layer-PLZT thin film (~300 nm thickness) exhibits the largest Voc and Jsc and the photovoltaic effect obviously depends on the value and direction of the poling electric field. When the device is applied a negative poling electric field, both the Voc and Jsc are significantly higher than those of the device applied the positive poling electric field, due to the depolarization field resulting from the remnant polarization in the same direction with the built-in electric field induced by the Schottky barrier, and the higher the negative poling electric field, the larger the Voc and Jsc. At a -333 kV/cm poling electric field, the FPV device exhibits the most superior photovoltaic properties with a Voc of as high as 0.73 V and Jsc of as large as 2.11 μA/cm2. This work opens a new way for developing ferroelectric photovoltaic devices with good properties.  相似文献   
8.
Besides entertainment, games have shown to have the potential to impact a broader variety of cognitive abilities. Research has consistently shown that several aspects in cognition such as visual short-memory, multitasking and spatial skills can be enhanced by game play. In a previous study, it was found that playing Monkey Tales, a game aimed at training arithmetic skills, helped second grade pupils to increase their accuracy in mental calculation as compared to paper exercises. In this follow up study we explore whether traditional methods and game training differ in terms of the cognitive processes that both are able to impact. We incorporated standardized measures of working memory and visuo-motor skills. Additionally, the mathematics game was modified and its contents extracted to allow precise comparison between the gaming and paper exercises condition. Thus each single math exercise, type of question (e.g., multiple choice), quantity and order was perfectly matched in the game training and the traditional training conditions. Gains in arithmetical performance, and self-reported measures of enjoyment were also investigated. We found some evidence suggesting that arithmetic performance enhancement induced by game play and paper exercises differ not only in terms of enjoyment but also of working memory capacity improvements.  相似文献   
9.
We investigated the resistive switching characteristics of a polystyrene:ZnO–graphene quantum dots system and its potential application in a one diode-one resistor architecture of an organic memory cell. The log–log IV plot and the temperature-variable IV measurements revealed that the switching mechanism in a low-current state is closely related to thermally activated transport. The turn-on process was induced by a space-charge-limited current mechanism resulted from the ZnO–graphene quantum dots acting as charge trap sites, and charge transfer through filamentary path. The memory device with a diode presented a ∼103 ION/IOFF ratio, stable endurance cycles (102 cycles) and retention times (104 s), and uniform cell-to-cell switching. The one diode-one resistor architecture can effectively reduce cross-talk issue and realize a cross bar array as large as ∼3 kbit in the readout margin estimation. Furthermore, a specific word was encoded using the standard ASCII character code.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号