首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
自动化技术   7篇
  2013年   6篇
  2007年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
《Advanced Robotics》2013,27(1-2):123-137
The purpose of this paper was to construct a velocity observer based on the dynamic model and realize accurate dynamic curve and force control. Curve fitting with the observer obtained precise velocity signals. Compared with PID and factored moment methods, it decreased the fitting errors a lot and achieved ideal results. Compensated with the inverse dynamic equation, the force-based impedance control with the observer could not only realize accurate force tracking, but achieve finger dynamic control by the combination of curve fitting and force tracking. Furthermore, a static grasp model was established for appropriate force distribution. The finger could grasp slippery, fragile, comparatively heavy and large objects like an egg with only base joint torque and position sensors, which illustrated that the hand could accomplish difficult tasks by using the static grasp model and dynamic control.  相似文献   
2.
《Advanced Robotics》2013,27(4):345-359
As each joint actuator of a robot manipulator has a limit value of torque, the motion control system should consider the torque saturation. In order to consider the torque saturation in a transient state, this paper proposes a new redundant motion control system using the autonomous consideration algorithm on torque saturation. A Jacobian matrix of a redundant robot manipulator can select the optimal one considering its motion energy in the steady state. When the motion control system carries out fast motion and quick disturbance suppression, a high joint torque is required in a transient state. In the experimental results, under the condition of having a large payload torque and a fast motion reference, the proposed redundant manipulator control realizes the quick robot motion robustly and smoothly.  相似文献   
3.
《Advanced Robotics》2013,27(12):1267-1285
Most active devices focused on vehicle stability concern on-road cars and cannot be applied satisfactorily in an off-road context, since the variability and the non-linearities of tire/ground contact are often neglected. In previous work, a rollover indicator devoted to light all-terrain vehicles accounting for these phenomena has been proposed. It is based on the prediction of the lateral load transfer. However, such an indicator requires the on-line knowledge of the tire cornering stiffness. Therefore, in this paper, an adapted backstepping observer, making use only of yaw rate measurement, is designed to estimate tire cornering stiffness and to account for its non-linearity. The capabilities of such an observer are demonstrated and discussed through both advanced simulations and actual experiments.  相似文献   
4.
《Advanced Robotics》2013,27(9):913-928
We are studying the robotic application of ionic polymer–metal composite (IPMC). The characteristics of IPMC greatly depend on the type of counterions, and it is considered that the performance of the actuators can be improved by combining the actuators with several types of counterions and applying an integrated control. IPMC also has a sensor function, as the IPMC film generates an electromotive force when it is deformed. It has the possibility to be integrated into an IPMC actuator with soft actuation. In this paper, we consider an integrated design of an IPMC actuator/sensor, and investigate control of the combined IPMC actuators using H control and the construction of an IPMC sensor system.  相似文献   
5.
介绍gdb的总体结构,在gdb自身进行调试的基础上,结合gdb源代码详细分析gdb的运行过程中的事件机制.对于gdb调试原理的研究,特别是基于gdb的嵌入式系统调试器的研究,具有较大的参考价值.  相似文献   
6.
《Advanced Robotics》2013,27(5):575-588
Underwater exploration requires mobility and manipulation. Underwater robotic vehicles (URV) have been employed for mobility, and robot manipulators attached to the underwater vehicle (i.e. rover) perform the manipulation. Usually, the manipulation mode takes place when the rover is stationary. The URV is then modeled as a passive joint and joints of the manipulator are modeled as active joints. URV motions are determined by inherent dynamic couplings between active and passive joints. Furthermore, the control problem becomes complex since there are many hydrodynamic terms as well as intrinsic model uncertainties to be considered. Tocope with these difficulties, we propose a disturbance observer-based robust control algorithm for underwater manipulators with passive joints. The proposed control algorithm is able to treat an underactuated system as a pseudo-active system in which passive joints are eliminated. Also, to realize a robust control method, a non-linear feedback disturbance observer is applied to each active joint. A four-jointed underwater robotic system with one passive joint is considered as an illustrative example. Through simulation, it is shown that the proposed control algorithm has good position tracking performance even in the presence of several external disturbances and model uncertainties.  相似文献   
7.
《Advanced Robotics》2013,27(2):119-134
A control approach for the robust position control of an induction motor based on the binary disturbance observer is described. The binary controller with the binary disturbance observer is implemented for the position control of the induction machine subjected to load disturbances and realizes continuous control. The binary disturbance observer is used to eliminate the chattering problem of a sliding mode disturbance observer. In order to eliminate the steady-state error, the binary disturbance observer with an integral augmented switching hyperplane is proposed. The robustness is achieved, and continuous control is realized by employing the proposed observer without the chattering problem and the steady-state error. The effectiveness of the proposed observer is confirmed by the comparative experimental results.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号