首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
化学工业   7篇
金属工艺   1篇
机械仪表   6篇
一般工业技术   6篇
冶金工业   2篇
自动化技术   6篇
  2016年   1篇
  2013年   26篇
  2007年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
Abstract

A computer model is presented that describes microstructural evolution during the ingot breakdown of nickel base superalloy Inconel 718 via the open die cogging operation. To support the development of the model, a compression testing programme has been carried out which covers the ranges of temperatures, strains, and strain rates experienced during thermomechanical processing. Analysis of the flow curves has allowed the identification of the regimes in which the various deformation mechanisms take place. Logic based rules have been incorporated into the model, and this has allowed predictions of the microstructural evolution to be made. Where possible, the results have been compared with the available experimental data and it is shown that theory and experiment are in reasonable agreement. A number of computational experiments have been carried out, to study the effects of changing the forging procedure.  相似文献   
2.
Abstract

Cast or solution treated specimens of a Bi–9·0Cd–26·7In (wt-%) alloy were observed to form a fine, three phase microstructure on aging at room temperature, replacing a single phase formed at a higher temperature. The three phases resulting from this solid state reaction were found to grow with a lamellar morphology into the high temperature phase, with a growth rate of 0·5–1·0 μm h-1 at room temperature. The equilibrium temperature for the transformation was found to be ~25°C. Using a Hitachi S-4500 field emission SEM, the phase transformation was followed in progress at magnifications of 3000 and 10 000 times. It was noted that a volume change was associated with the transformation. It was concluded that the transformation is of the ternary eutectoid type.  相似文献   
3.
《Advanced Robotics》2013,27(11):1253-1279
This work presents a kinematic modeling method for wheeled mobile robots with slip based on physical principles. First, we present the kinematic modeling of a mobile robot with no-slip considering four types of wheels: fixed, centered orientable, off-centered orientable (castor) and Swedish (also called Mecanum, Ilon or universal). Then, the dynamics of a wheeled mobile robot based on Lagrange formulation are derived and discussed. Next, a quasi-static motion is considered to obtain the kinematic conditions that provide the slip modeling equations. Several types of traction models for the slip between the wheel and the floor are indicated. In particular, for a frictional force linearly dependent on the sliding velocity, the no-slip kinematic equation of the wheeled mobile robot is related, through the weighted least-squares algorithm, with the slip modeling equations. To illustrate the applications of the proposed approach a tricycle vehicle is considered in a real situation. The experimental results obtained for the slip kinematic model are compared with the ones obtained for the well-known Kalman filter.  相似文献   
4.
Self-cleaning surfaces have received a great deal of attention, both in research studies and commercial applications. Both transparent and non-transparent self-cleaning surfaces are highly desired, as they offer many advantages and their potential applications are endless. As in many other cases, also in the case of self-cleaning surfaces, nature found a solution before man. The Lotus flower is a symbol of purity in Asian cultures, even when rising from muddy waters it stays clean and untouched by dirt, organisms and pollutants. The Lotus leaf "self-cleaning" surface is hydrophobic and rough, showing a two-layer morphology. While hydrophobicity produces a high contact angle, the two-layer morphology reduces the adhesion of dirt and water drops to the surface. Because of this low adhesion, water drops easily slide across the leaf surface carrying the dirt particles with them. In the present work the Lotus leaf morphology was mimicked using hydrophobic chemistry and a two-layer topography, with a base layer of silica and a top layer of intrinsically nanostructured polyhedral oligomeric silsesquioxanes (POSS) particles. Results have indicated that, thus, a transparent ultra-hydrophobic coating can be obtained. When these materials were mixed and used as a single layer the hydrophobicity deceased significantly. The contact angle and sliding angle measurements were supported by AFM micrographs.  相似文献   
5.
The effects of nanoroughness and chemical composition on the contact and sliding angles on hydrophobic surfaces were studied theoretically and experimentally. A theoretical model based on forces developed at the contact area between a liquid drop and hydrophobic smooth or nanoroughened surface was developed and compared with the existing models, which are based on forces developed at the periphery between the drop and the solid surface. The contact area based model gives rise to an interfacial adhesion strength parameter that better describes the drop-sliding phenomenon. Consequently, relationships were derived describing the dependence between the interfacial adhesion strength of the liquid drop to the surface of a given composition, the mass of the drop, the measured contact angles and the sliding angle. For a given surface chemistry, the sliding angle on a nanometric roughened surface can be predicted based on measurements of contact angles and the sliding angle on the respective smooth surface. Various hydrophobic coatings having different surface nanoroughnesses were prepared and, subsequently, contact angles and sliding angles on them as a function of drop volume were measured. The validity of the proposed model was investigated and compared with the existing models and the proposed model demonstrated good agreement with experimental results.  相似文献   
6.
《Advanced Robotics》2013,27(6-7):689-704
It is known that classical sliding mode control generates chatter which is undesirable. One way to reduce this chatter is the use of high-order sliding mode (HOSM) control. The HOSM control techniques are applied to the first 2 d.o.f. of a robot actuated by pneumatic artificial rubber muscles (PARMs). The PARMs are arranged in opposite pairs (antagonistic configuration). The objective is to show that without the use of the equivalent control, it is still possible to control the robot by the use of HOSM and at the same time reduce the chatter. Experimental results are presented and comparison between two second-order sliding controls established.  相似文献   
7.
《Advanced Robotics》2013,27(11-12):1515-1538
Controlling a flexible robot arm driven by McKibben artificial muscles with direct transmission is delicate. The usual PID controller rapidly reveals itself to be inadequate and robust control tools are unavoidable. Classical sliding control, although robust, generates chatter. Several solutions are available to attenuate this phenomenon, among them the twisting and super twisting algorithms, which belong to the 2-sliding control set. It will be shown when to use the equivalent control and the effect of a noised sensor signal on control performance. Also, the use of an additional discontinuous term that increases robustness, performance and stability is put forward. Experimental results are presented and discussed.  相似文献   
8.
Abstract

A model that describes the ferrite–austenite transformation during continuous heating in Armco iron and three very low carbon, low manganese steels with a fully ferritic initial microstructure is presented. This model allows calculation of the volume fractions of austenite and ferrite during transformation as a function of temperature, and hence knowledge of the austenite formation kinetics under non-isothermal conditions in fully ferritic steels. Moreover, since dilatometric analysis is a technique very often used to study phase transformations in steels, a second model, which describes the dilatometric behaviour of the material and calculates the relative change in length that occurs during the ferrite–austenite transformation, has also been developed. Both kinetics and dilatometric models have been validated by comparison of theoretical and experimental dilatometric heating curves. Predicted and experimental results are in satisfactory agreement.  相似文献   
9.
Abstract

In the present study, the wear behaviour of Cu–Al2O3 composites and Cu–Al alloys has been investigated. The experiment involved casting of Cu–Al alloys with 0·37, 1, 2 and 3 wt-% of aluminium under inert gas atmosphere. The composites were produced by internal oxidation of alloys at 950°C for 10 h in presence of Fe2O3 and Al2O3 powders mixture. The microstructures of composites were studied using SEM and atomic force microscopy. To identify wear behaviour of specimens, dry sliding pin-on-disk wear tests were conducted according to ASTM G99-95a standard. The normal loads of 20, 30, and 40 N were applied on specimens during wear tests. The sliding speed and distances were selected as 0·5 m s–1 and 500, 1000 and 1500 m respectively. To specify the wear mechanisms, the worn surfaces of composites were examined by SEM equipped with EDX. According to wear test results, increasing applied load and sliding distance leads to more volume loss in all specimens. Composites represent better wear resistance in comparison to alloys. Additionally, increasing the volume fraction of alumina particles in composites enhances the wear resistance, especially under high applied load. The wear mechanisms are mainly abrasion, oxidation and delamination.  相似文献   
10.
Abstract

The present investigation pertains to the observations made during sliding of a grey cast iron against a steel counterface over a range of sliding speeds, applied loads and test environments. The nature of the environment was altered through the presence of oil and suspended graphite particles therein. The presence of oil improved the wear characteristics of the samples in terms of lower wear rate and decreased frictional heating in general. An additional presence of suspended graphite particles in the oil lubricant brought about a further improvement in the wear response of the samples in all the test conditions except at the highest speed at high applied loads; the trend reversed in the latter case. Increasing speed and load led to deterioration in the wear behaviour. The behaviour of the material has been explained in terms of specific response of different microconstituents such as pearlite, ferrite and graphite and corroborated with the observed features of wear surfaces, subsurface regions and debris particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号