首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20357篇
  免费   2080篇
  国内免费   1593篇
电工技术   1607篇
综合类   2105篇
化学工业   2862篇
金属工艺   2378篇
机械仪表   485篇
建筑科学   2124篇
矿业工程   1130篇
能源动力   800篇
轻工业   829篇
水利工程   921篇
石油天然气   1749篇
武器工业   121篇
无线电   1005篇
一般工业技术   1917篇
冶金工业   2706篇
原子能技术   260篇
自动化技术   1031篇
  2024年   67篇
  2023年   326篇
  2022年   568篇
  2021年   653篇
  2020年   661篇
  2019年   572篇
  2018年   528篇
  2017年   609篇
  2016年   682篇
  2015年   651篇
  2014年   977篇
  2013年   1110篇
  2012年   1272篇
  2011年   1473篇
  2010年   1113篇
  2009年   1160篇
  2008年   1069篇
  2007年   1235篇
  2006年   1261篇
  2005年   1152篇
  2004年   1028篇
  2003年   898篇
  2002年   773篇
  2001年   682篇
  2000年   571篇
  1999年   504篇
  1998年   393篇
  1997年   359篇
  1996年   314篇
  1995年   284篇
  1994年   220篇
  1993年   198篇
  1992年   157篇
  1991年   115篇
  1990年   94篇
  1989年   70篇
  1988年   48篇
  1987年   42篇
  1986年   40篇
  1985年   19篇
  1984年   13篇
  1983年   9篇
  1982年   9篇
  1981年   14篇
  1980年   8篇
  1979年   7篇
  1976年   3篇
  1975年   3篇
  1955年   2篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
1.
Mass transfer in polycrystalline Yb2SiO5 wafers with precise composition control was evaluated and analyzed by oxygen permeation experiments at high temperatures using an oxygen tracer. Oxygen permeation proceeded due to mutual grain boundary diffusion of oxide ions and Yb ions without synergistic effects such as acceleration or suppression. The oxygen shielding properties of Yb2SiO5 were compared with those of the other line compounds such as Yb2Si2O7 and Al2O3 based on the determined mass transfer parameters. It was found that the more preferentially an oxide ion diffuses in the grain boundary compared to the interior of the grain, the greater the effect of suppressing the movement of the oxide ion by applying an oxygen potential gradient becomes.  相似文献   
2.
本项目主要研究和实现了工业废白土在BAYAH燃煤自备电厂中的再利用,实现变废为宝,减少了环境污染,同时为企业创造了一定的经济效益。针对废白土的特性,对燃料输送系统给煤机、皮带机、煤仓、下料溜子和排渣系统进行了改造。通过修改操作规程消除废白土对锅炉运行的影响。  相似文献   
3.
Despite recent rapid advances in metal halide perovskites for use in optoelectronics, the fundamental understanding of the electrical-poling-induced ion migration, accounting for many unusual attributes and thus performance in perovskite-based devices, remain comparatively elusive. Herein, the electrical-poling-promoted polarization potential is reported for rendering hybrid organic–inorganic perovskite photodetectors with high photocurrent and fast response time, displaying a tenfold enhancement in the photocurrent and a twofold decrease in the response time after an external electric field poling. First, a robust meniscus-assisted solution-printing strategy is employed to facilitate the oriented perovskite crystals over a large area. Subsequently, the electrical poling invokes the ion migration within perovskite crystals, thus inducing a polarization potential, as substantiated by the surface potential change assessed by Kelvin probe force microscopy. Such electrical-poling-induced polarization potential is responsible for the markedly enhanced photocurrent and largely shortened response time. This work presents new insights into the electrical-poling-triggered ion migration and, in turn, polarization potential as well as into the implication of the latter for optoelectronic devices with greater performance. As such, the utilization of ion-migration-produced polarization potential may represent an important endeavor toward a wide range of high-performance perovskite-based photodetectors, solar cells, transistors, scintillators, etc.  相似文献   
4.
Monomers and their polymers containing 3-arylcarbazolyl electrophores have been synthesized by the multi-step synthetic route. The materials were characterized by thermo-gravimetric analysis, differential scanning calorimetry and electron photoemission technique. The polymers represent materials of high thermal stability having initial thermal degradation temperatures in the range of 331–411 °C. The glass transition temperatures of the amorphous polymeric materials were in the rage of 148–175 °C. The electron photoemission spectra of thin layers of monomers showed ionization potentials in the range of 5.6–5.65 eV. Hole-transporting properties of the polymers were tested in the structures of organic light emitting diodes with Alq3 as the green emitter. The device containing hole-transporting layers of polyether with 3-naphthylcarbazolyl groups exhibited the best overall performance with a maximum current efficiency of 3.3 cd/A and maximum brightness of about 1000 cd/m2.  相似文献   
5.
《Ceramics International》2022,48(8):10885-10894
Lead-free bismuth sodium titanate-strontium titanate (NBT-ST) dielectric ceramic materials have been extensively investigated energy storage materials because of their relaxor characteristics. In this study, four different lanthanide elements were introduced into the ferroelectric NBT-ST ceramic to improve their relaxor properties. The introduction of the lanthanide resulted in an increase in disorder at location A within the perovskite lattice and improved relaxor characteristics, leading to a stored energy density of more than 3.5 J/cm3. In particular, an ultrahigh recoverable stored energy density of 4.94 J/cm3 and efficiency of 88.45% were achieved at 440 kV/cm when the NBT-ST ceramic was modified with neodymium. The modified ceramic also exhibited good thermal stability in the range of 30–120 °C, as well as a fast discharge time of ~153 ns, indicating that Nd-incorporated NBT-ST is a promising candidate for electrical energy storage ceramic.  相似文献   
6.
Power transformers are protected by different relays that operate independently. Malfunction of each relay has a major role in reducing the reliability of the protection system. In order to mitigate the main drawbacks of the power transformer relays, an overall protection scheme is presented in this paper. This scheme proposes a novel multi criterion algorithm using decision-making based on fuzzy logic. In this paper the outputs of restricted earth fault relay and a directional check unit, are combined with the output of the differential protection relay. Therefore, problems that are pertaining to independent operation of each relay have been mitigated and the relays cover protection blind spots of each other. The improved power transformer protection (IPTP) scheme enhances the sensitivity and reliability of the power transformer protection. Extensive simulations are used to measure the effectiveness and merit of the proposed IPTP relay. The above efforts result in a multi criteria approach for protection of power transformers.  相似文献   
7.
The heat capacity of ytterbium orthovanadate was first measured by adiabatic calorimetry in the temperature range T?=?12.28–344.06?K. No obvious anomalies were observed on the curve obtained. The values of standard thermodynamic functions in the temperature range T?=?0–400 K were calculated. Based on low-temperature calorimetry data obtained, previously published data on the high-temperature heat capacity of ytterbium orthovanadate were corrected. The anomalous contribution to heat capacity for YbVO4 was compared with the data known for YbPO4.  相似文献   
8.
The feasibility of microbial hydrogen consumption to mitigate the hydrogen embrittlement (HE) under different cathodic potentials was evaluated using the Devanathan-Stachurski electrochemical test and the hydrogen permeation efficiency η. The hydrogen permeation efficiency η in the presence of strain GA-1 was lower than that in sterile medium. The cathodic potential inhibited the adherence of strain GA-1 to AISI 4135 steel surface, thereby reducing the hydrogen consumption of strain GA-1. The adherent GA-1 cells were capable of consuming ‘cathodic hydrogen’ and reducing the proportions of absorbed hydrogen, indicating that it is theoretically possible to control HE by hydrogen-consuming microbes.  相似文献   
9.
Magnesium (Mg)-based nanocomposites owing to their low density and biocompatibility are being targeted for transportation and biomedical sectors. In order to support a sustainable environment, the prime aim of this study was to develop non-toxic magnesium-based nanocomposites for a wide spectrum of applications. To support this objective, cerium oxide nanoparticles (0.5?vol%, 1?vol%, and 1.5?vol%) reinforced Mg composites are developed in this study using blend-press-sinter powder metallurgy technique. The microstructural studies exhibited limited amounts of porosity in Mg and Mg-CeO2 samples (< 1%). Increasing presence of CeO2 nanoparticles (up to 1.5?vol%) led to a progressive increase in microhardness, dimensional stability, damping capacity and ignition resistance of magnesium. The compressive strengths increased with the increasing addition of the nanoparticles with a significant enhancement in the fracture strain (up to ~48%). Superior energy absorption was observed for all the composite samples prior to compressive fracture. Further, enhancement in thermal, mechanical and damping characteristics of pure Mg is correlated with microstructural changes due to the presence of the CeO2 nanoparticles.  相似文献   
10.
A new constitutive equation of thermoelasticity for crystals is presented based on the interatomic potential and solid mechanics at finite temperature. Using the new constitutive equation, the calculations for crystal copper and graphene are carried out under different loading paths at different temperatures. The calculated results are in good agreement with those of the previous thermoelasticity constitutive equation based on quantum mechanics, which clearly indicates that our new constitutive equation of thermoelasticity is correct. A lot of comparisons also show that the present theory is more concise and efficient than the previous thermal stress theory in the practical application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号