首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26579篇
  免费   3322篇
  国内免费   2054篇
电工技术   3239篇
综合类   3217篇
化学工业   624篇
金属工艺   925篇
机械仪表   4124篇
建筑科学   922篇
矿业工程   588篇
能源动力   462篇
轻工业   324篇
水利工程   471篇
石油天然气   1078篇
武器工业   850篇
无线电   5637篇
一般工业技术   2572篇
冶金工业   517篇
原子能技术   368篇
自动化技术   6037篇
  2024年   120篇
  2023年   359篇
  2022年   649篇
  2021年   704篇
  2020年   877篇
  2019年   679篇
  2018年   732篇
  2017年   964篇
  2016年   1148篇
  2015年   1282篇
  2014年   1727篇
  2013年   1545篇
  2012年   2058篇
  2011年   2108篇
  2010年   1537篇
  2009年   1583篇
  2008年   1591篇
  2007年   1939篇
  2006年   1718篇
  2005年   1400篇
  2004年   1133篇
  2003年   1059篇
  2002年   847篇
  2001年   724篇
  2000年   634篇
  1999年   491篇
  1998年   390篇
  1997年   352篇
  1996年   308篇
  1995年   272篇
  1994年   217篇
  1993年   165篇
  1992年   116篇
  1991年   95篇
  1990年   77篇
  1989年   84篇
  1988年   63篇
  1987年   32篇
  1986年   16篇
  1985年   25篇
  1984年   21篇
  1983年   9篇
  1982年   12篇
  1981年   22篇
  1980年   12篇
  1979年   4篇
  1978年   6篇
  1977年   14篇
  1976年   4篇
  1956年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
诱导式卫星欺骗干扰可诱导航空器逐渐偏离预定航迹,难以被发现,因此及时有效地检测干扰是飞行安全的保障。在现有紧组合导航体制基础上,设计了一种基于误差估值累加开环校正的紧组合导航结构,并证明了其性能与传统闭环校正紧组合导航性能等效。在此结构中,将紧组合导航系统与自适应序贯概率比检测方法结合,提出了一种基于误差估值累加开环校正的诱导式欺骗检测方法,融合紧组合导航信息与其他不受欺骗影响的导航信息,构建欺骗检测统计量进行诱导式欺骗检测。仿真结果表明,开环校正结构可避免随时间累加的惯性导航系统误差所导致的组合导航滤波器发散问题,同时欺骗检测方法可进一步提高算法对“最坏”情形下微小诱导式欺骗的检测效果。  相似文献   
2.
The evaluation of the volumetric accuracy of a machine tool is an open challenge in the industry, and a wide variety of technical solutions are available in the market and at research level. All solutions have advantages and disadvantages concerning which errors can be measured, the achievable uncertainty, the ease of implementation, possibility of machine integration and automation, the equipment cost and the machine occupation time, and it is not always straightforward which option to choose for each application. The need to ensure accuracy during the whole lifetime of the machine and the availability of monitoring systems developed following the Industry 4.0 trend are pushing the development of measurement systems that can be integrated in the machine to perform semi-automatic verification procedures that can be performed frequently by the machine user to monitor the condition of the machine. Calibrated artefact based calibration and verification solutions have an advantage in this field over laser based solutions in terms of cost and feasibility of machine integration, but they need to be optimized for each machine and customer requirements to achieve the required calibration uncertainty and minimize machine occupation time.This paper introduces a digital twin-based methodology to simulate all relevant effects in an artefact-based machine tool calibration procedure, from the machine itself with its expected error ranges, to the artefact geometry and uncertainty, artefact positions in the workspace, probe uncertainty, compensation model, etc. By parameterizing all relevant variables in the design of the calibration procedure, this simulation methodology can be used to analyse the effect of each design variable on the error mapping uncertainty, which is of great help in adapting the procedure to each specific machine and user requirements. The simulation methodology and the analysis possibilities are illustrated by applying it on a 3-axis milling machine tool.  相似文献   
3.
A new method for the polygonal approximation is presented. The method is based on the search for break points through a context-free grammar, that accepts digital straight segments with loss of information, as well as the decrease in the error committed employing the comparison of a tolerable error. We present an application of our method to different sets of objects widely used, as well as a comparison of our results with the best results reported in the literature, proving that our method achieves better values of error criteria. Besides, a new way to find polygonal approximations, with context-free grammars to recognize digital straight segments without loss of pixels, it is also addressed.  相似文献   
4.
Number entry is a ubiquitous activity and is often performed in safety- and mission-critical procedures, such as healthcare, science, finance, aviation and in many other areas. We show that Monte Carlo methods can quickly and easily compare the reliability of different number entry systems. A surprising finding is that many common, widely used systems are defective, and induce unnecessary human error. We show that Monte Carlo methods enable designers to explore the implications of normal and unexpected operator behaviour, and to design systems to be more resilient to use error. We demonstrate novel designs with improved resilience, implying that the common problems identified and the errors they induce are avoidable.  相似文献   
5.
Quadrature spatial modulation (QSM) utilizes the in‐phase and quadrature spatial dimensions to transmit the real and imaginary parts of a single signal symbol, respectively. The improved QSM (IQSM) transmits two signal symbols per channel use through a combination of two antennas for each of the real and imaginary parts. The main contributions of this study can be summarized as follows. First, we derive an upper bound for the error performance of the IQSM. We then design constellation sets that minimize the error performance of the IQSM for several system configurations. Second, we propose a double QSM (DQSM) that transmits the real and imaginary parts of two signal symbols through any available transmit antennas. Finally, we propose a parallel IQSM (PIQSM) that splits the antenna set into equal subsets and performs IQSM within each subset using the same two signal symbols. Simulation results demonstrate that the proposed constellations significantly outperform conventional constellations. Additionally, DQSM and PIQSM provide a performance similar to that of IQSM while requiring a smaller number of transmit antennas and outperform IQSM with the same number of transmit antennas.  相似文献   
6.
水库水深测量精度直接关系到水库的防洪安全与蓄水兴利。现有回声测深仪无法应对大水深施测的情况,且测量受到水库水温分层影响。利用回声测深仪配合校正标进行大水深测量的校正方法,能够精确检测到回声测深仪水深测量的误差及差值、系统延时问题等,通过与各级校正标的真值比较、修正,能使测值近似真值,且使误差控制在容许范围内。介绍了水深校正标基本原理、操作方法和步骤以及在水库测深中的应用。  相似文献   
7.
We explore a truncation error criterion to steer adaptive step length refinement and coarsening in incremental-iterative path following procedures, applied to problems in large-deformation structural mechanics. Elaborating on ideas proposed by Bergan and collaborators in the 1970s, we first describe an easily computable scalar stiffness parameter whose sign and rate of change provide reliable information on the local behavior and complexity of the equilibrium path. We then derive a simple scaling law that adaptively adjusts the length of the next step based on the rate of change of the stiffness parameter at previous points on the path. We show that this scaling is equivalent to keeping a local truncation error constant in each step. We demonstrate with numerical examples that our adaptive method follows a path with a significantly reduced number of points compared to an analysis with uniform step length of the same fidelity level. A comparison with Abaqus illustrates that the truncation error criterion effectively concentrates points around the smallest-scale features of the path, which is generally not possible with automatic incrementation solely based on local convergence properties.  相似文献   
8.
Abstract

Model order reduction is a common practice to reduce large order systems so that their simulation and control become easy. Nonlinearity aware trajectory piecewise linear is a variation of trajectory piecewise linearization technique of order reduction that is used to reduce nonlinear systems. With this scheme, the reduced approximation of the system is generated by weighted sum of the linearized and reduced sub-models obtained at certain linearization points on the system trajectory. This scheme uses dynamically inspired weight assignment that makes the approximation nonlinearity aware. Just as weight assignment, the process of linearization points selection is also important for generating faithful approximations. This article uses a global maximum error controller based linearization points selection scheme according to which a state is chosen as a linearization point if the error between a current reduced model and the full order nonlinear system reaches a maximum value. A combination that not only selects linearization points based on an error controller but also assigns dynamic inspired weights is shown in this article. The proposed scheme generates approximations with higher accuracies. This is demonstrated by applying the proposed method to some benchmark nonlinear circuits including RC ladder network and inverter chain circuit and comparing the results with the conventional schemes.  相似文献   
9.
The Chinese Remainder Theorem (CRT) explains how to estimate an integer-valued number from the knowledge of the remainders obtained by dividing such unknown integer by co-prime integers. As an algebraic theorem, CRT is the basis for several techniques concerning data processing. For instance, considering a single-tone signal whose frequency value is above the sampling rate, the respective peak in the DFT informs the impinging frequency value modulo the sampling rate. CRT is nevertheless sensitive to errors in the remainders, and many efforts have been developed in order to improve its robustness. In this paper, we propose a technique to estimate real-valued numbers by means of CRT, employing for this goal a Kroenecker based M-Estimation (ME), specially suitable for CRT systems with low number of remainders. Since ME schemes are in general computationally expensive, we propose a mapping vector obtained via Kroenecker products which considerably reduces the computational complexity. Furthermore, our proposed technique enhances the probability of estimating an unknown number accurately even when the errors in the remainders surpass 1/4 of the greatest common divisor of all moduli. We also provide a version of the mapping vectors based on tensorial n-mode products, delivering in the end the same information of the original method. Our approach outperforms the state-of-the-art CRT methods not only in terms of percentage of successful estimations but also in terms of smaller average error.  相似文献   
10.
In reliability analysis, the stress-strength model is often used to describe the life of a component which has a random strength (X) and is subjected to a random stress (Y). In this paper, we considered the problem of estimating the reliability R=P [Y<X] when the distributions of both stress and strength are independent and follow exponentiated Pareto distribution. The maximum likelihood estimator of the stress strength reliability is calculated under simple random sample, ranked set sampling and median ranked set sampling methods. Four different reliability estimators under median ranked set sampling are derived. Two estimators are obtained when both strength and stress have an odd or an even set size. The two other estimators are obtained when the strength has an odd size and the stress has an even set size and vice versa. The performances of the suggested estimators are compared with their competitors under simple random sample via a simulation study. The simulation study revealed that the stress strength reliability estimates based on ranked set sampling and median ranked set sampling are more efficient than their competitors via simple random sample. In general, the stress strength reliability estimates based on median ranked set sampling are smaller than the corresponding estimates under ranked set sampling and simple random sample methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号