首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17881篇
  免费   1776篇
  国内免费   1346篇
电工技术   1321篇
综合类   1594篇
化学工业   1954篇
金属工艺   1538篇
机械仪表   1262篇
建筑科学   941篇
矿业工程   280篇
能源动力   233篇
轻工业   237篇
水利工程   313篇
石油天然气   462篇
武器工业   230篇
无线电   2964篇
一般工业技术   2635篇
冶金工业   360篇
原子能技术   183篇
自动化技术   4496篇
  2024年   70篇
  2023年   315篇
  2022年   390篇
  2021年   515篇
  2020年   472篇
  2019年   450篇
  2018年   395篇
  2017年   509篇
  2016年   495篇
  2015年   581篇
  2014年   907篇
  2013年   977篇
  2012年   1142篇
  2011年   1175篇
  2010年   940篇
  2009年   949篇
  2008年   971篇
  2007年   1250篇
  2006年   1153篇
  2005年   1086篇
  2004年   944篇
  2003年   855篇
  2002年   685篇
  2001年   602篇
  2000年   549篇
  1999年   437篇
  1998年   384篇
  1997年   311篇
  1996年   272篇
  1995年   241篇
  1994年   205篇
  1993年   190篇
  1992年   135篇
  1991年   92篇
  1990年   82篇
  1989年   68篇
  1988年   52篇
  1987年   22篇
  1986年   34篇
  1985年   25篇
  1984年   15篇
  1983年   8篇
  1982年   12篇
  1981年   5篇
  1979年   9篇
  1978年   6篇
  1977年   4篇
  1976年   4篇
  1975年   4篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
孙咸 《焊管》2022,45(5):22-35
综述了铁素体与铁素体异种金属焊缝(dissimilar metal welds,DMWs)接头界面组织及其影响。结果表明,在焊后热处理或运行温度下的铁素体钢DMWs接头的不均匀界面组织中,通常会形成脱碳层和增碳层。在铁素体钢DMWs焊接接头界面组织影响因素中,焊缝金属的化学成分有重要影响;焊后热处理规范(温度和时间)、工作温度下运行时间的影响较为突出;焊接工艺参数的影响亦不可忽略。异种钢接头界面处近缝区裂纹的产生,以及接头的蠕变强度随Larson Miller 参数增大而下降等不利影响,均为异种钢界面碳迁移行为所导致。焊缝成分控制法是接头界面组织控制或改善的必要条件,而脱碳层部位转移法能有效防止裂纹发生,亦是接头安全运行的重要工艺措施之一。  相似文献   
2.
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.  相似文献   
3.
Large‐scale production of hydrogen from water‐alkali electrolyzers is impeded by the sluggish kinetics of hydrogen evolution reaction (HER) electrocatalysts. The hybridization of an acid‐active HER catalyst with a cocatalyst at the nanoscale helps boost HER kinetics in alkaline media. Here, it is demonstrated that 1T–MoS2 nanosheet edges (instead of basal planes) decorated by metal hydroxides form highly active edge 1T‐MoS 2 / edge Ni ( OH ) 2 heterostructures, which significantly enhance HER performance in alkaline media. Featured with rich edge 1T‐MoS 2 / edge Ni ( OH ) 2 sites, the fabricated 1T–MoS2 QS/Ni(OH)2 hybrid (quantum sized 1T–MoS2 sheets decorated with Ni(OH)2 via interface engineering) only requires overpotentials of 57 and 112 mV to drive HER current densities of 10 and 100 mA cm?2, respectively, and has a low Tafel slope of 30 mV dec?1 in 1 m KOH. So far, this is the best performance for MoS2‐based electrocatalysts and the 1T–MoS2 QS/Ni(OH)2 hybrid is among the best‐performing non‐Pt alkaline HER electrocatalysts known. The HER process is durable for 100 h at current densities up to 500 mA cm?2. This work not only provides an active, cost‐effective, and robust alkaline HER electrocatalyst, but also demonstrates a design strategy for preparing high‐performance catalysts based on edge‐rich 2D quantum sheets for other catalytic reactions.  相似文献   
4.
5.
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease-19 (COVID-19) being associated with severe pneumonia. Like with other viruses, the interaction of SARS-CoV-2 with host cell proteins is necessary for successful replication, and cleavage of cellular targets by the viral protease also may contribute to the pathogenesis, but knowledge about the human proteins that are processed by the main protease (3CLpro) of SARS-CoV-2 is still limited. We tested the prediction potentials of two different in silico methods for the identification of SARS-CoV-2 3CLpro cleavage sites in human proteins. Short stretches of homologous host-pathogen protein sequences (SSHHPS) that are present in SARS-CoV-2 polyprotein and human proteins were identified using BLAST analysis, and the NetCorona 1.0 webserver was used to successfully predict cleavage sites, although this method was primarily developed for SARS-CoV. Human C-terminal-binding protein 1 (CTBP1) was found to be cleaved in vitro by SARS-CoV-2 3CLpro, the existence of the cleavage site was proved experimentally by using a His6-MBP-mEYFP recombinant substrate containing the predicted target sequence. Our results highlight both potentials and limitations of the tested algorithms. The identification of candidate host substrates of 3CLpro may help better develop an understanding of the molecular mechanisms behind the replication and pathogenesis of SARS-CoV-2.  相似文献   
6.
xBi2/3Cu3Ti4O12/(1-x)CaCu3Ti4O12 composites were prepared by traditional solid-state reaction method. Extremely high nonlinear coefficient of 25 and breakdown field of 18.92 kV·cm−1 were obtained in small current range of 0.1−1 mA·cm-2. In addition, reduced dielectric loss of 0.055 was achieved with high dielectric constant of 1369. Optimized nonlinear and dielectric properties were integrated to make the composites a promising dual-function varistor-capacitor candidate. Microstructure analysis discovered two areas with various Bi/Ca ratio, designated as Bi-H and Bi-L respectively. It was found that the maximum ratio of Bi-H/Bi-L heterogeneous interface corresponded to optimized nonlinear and dielectric performance, which was associated with elevated potential barrier height and huge grain boundary resistance. Combined with relaxation analysis, a core-shell structure was proposed to elaborate microstructure evolution in xBi2/3Cu3Ti4O12/(1-x)CaCu3Ti4O12 composite. According to the core-shell model, variation of heterogeneous interface was illustrated on how to influence nonlinear properties, which was well fitted to experimental results.  相似文献   
7.
8.
Separation membranes with higher molecular weight cut-offs are needed to separate ions and small molecules from a mixed feed. The molecular sieving phenomenon can be utilized to separate smaller species with well-defined dimensions from a mixture. Here, the formation of freestanding polyimine nanofilms with thicknesses down to ≈14 nm synthesized via self-assembly of pre-synthesized imine oligomers is reported. Nanofilms are fabricated at the water–xylene interface followed by reversible condensation of polymerization according to the Pieranski theory. Polyimine nanofilm composite membranes are made via transferring the freestanding nanofilm onto ultrafiltration supports. High water permeance of 49.5 L m-2 h−1 bar−1 is achieved with a complete rejection of brilliant blue-R (BBR; molecular weight = 825 g mol−1) and no more than 10% rejection of monovalent and divalent salts. However, for a mixed feed of BBR dye and monovalent salt, the salt rejection is increased to ≈18%. Membranes are also capable of separating small dyes (e.g., methyl orange; MO; molecular weight = 327 g mol−1) from a mixed feed of BBR and MO. Considering a thickness of ≈14 nm and its separation efficiency, the present membrane has significance in separation processes.  相似文献   
9.
Proficiency on underlying mechanism of rubber-metal adhesion has been increased significantly in the last few decades. Researchers have investigated the effect of various ingredients, such as hexamethoxymethyl melamine, resorcinol, cobalt stearate, and silica, on rubber-metal interface. The role of each ingredient on rubber-metal interfacial adhesion is still a subject of scrutiny. In this article, a typical belt skim compound of truck radial tire is selected and the effect of each adhesive ingredient on adhesion strength is explored. Out of these ingredients, the effect of cobalt stearate is found noteworthy. It has improved adhesion strength by 12% (without aging) and by 11% (humid-aged), respectively, over control compound. For detailed understanding of the effect of cobalt stearate on adhesion, scanning electron microscopy and energy dispersive spectroscopy are utilized to ascertain the rubber coverage and distribution of elements. X-ray photoelectron spectroscopy results helped us to understand the impact of CuXS layer depth on rubber-metal adhesion. The depth profile of the CuXS layer was found to be one of the dominant factors of rubber-metal adhesion retention. Thus, this study has made an attempt to find the impact of different adhesive ingredients on the formation of CuXS layer depth at rubber-metal interface and establish a correlation with adhesion strength simultaneously.  相似文献   
10.
A strongly electron deficient and high triplet energy host for blue emitters was developed by decorating a dibenzofuran modified biphenyl backbone structure with multiple CN units. Two hosts, 6,6′-bis(6-cyanodibenzo[b,d]furan-4-yl)-[1,1′-biphenyl]-3,3′-dicarbonitrile(CNDBF1) and 2,2′-bis(6-cyanodibenzo[b,d]furan-4-yl)-[1,1′-biphenyl]-4,4′-dicarbonitrile(CNDBF2), were derived from the CN decoration strategy for application in blue organic light-emitting diodes requiring high triplet energy host. They showed high triplet energy above 2.79 eV and acted as the electron transport type host based on the strong electron deficiency. The mixture of the CNDBF1 and CNDBF2 hosts with a hole transport type 3,3′-di(9H-carbazol-9-yl)-1,1′-biphenyl host performed as the exciplex host of a blue phosphor and accomplished high external quantum efficiency of 22.7% in the blue phosphorescent organic light-emitting diodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号