首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47431篇
  免费   5628篇
  国内免费   2637篇
电工技术   5628篇
技术理论   2篇
综合类   4459篇
化学工业   4927篇
金属工艺   2946篇
机械仪表   2531篇
建筑科学   5075篇
矿业工程   4449篇
能源动力   1160篇
轻工业   1803篇
水利工程   2352篇
石油天然气   4338篇
武器工业   485篇
无线电   3735篇
一般工业技术   4993篇
冶金工业   2422篇
原子能技术   581篇
自动化技术   3810篇
  2024年   216篇
  2023年   808篇
  2022年   1419篇
  2021年   1647篇
  2020年   1745篇
  2019年   1445篇
  2018年   1412篇
  2017年   1830篇
  2016年   1965篇
  2015年   2055篇
  2014年   2974篇
  2013年   2775篇
  2012年   3473篇
  2011年   3679篇
  2010年   2660篇
  2009年   2769篇
  2008年   2620篇
  2007年   3132篇
  2006年   2842篇
  2005年   2414篇
  2004年   1970篇
  2003年   1813篇
  2002年   1440篇
  2001年   1195篇
  2000年   1008篇
  1999年   774篇
  1998年   656篇
  1997年   563篇
  1996年   431篇
  1995年   377篇
  1994年   336篇
  1993年   259篇
  1992年   203篇
  1991年   123篇
  1990年   119篇
  1989年   113篇
  1988年   79篇
  1987年   44篇
  1986年   54篇
  1985年   48篇
  1984年   50篇
  1983年   41篇
  1982年   46篇
  1981年   28篇
  1980年   12篇
  1979年   8篇
  1974年   3篇
  1959年   6篇
  1956年   2篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Increasing the heat capacity of heat exchangers is a crucial need for modern devices. The thermal conductivity of the usual fluids and the Nusselt (Nu) number of flows containing such fluids are two bottlenecks in the way of increasing heat delivery in the heat exchangers. For this reason, nanofluids have been introduced. The effect of utilizing a Cu-water nanofluid as a coolant of two hot pipes in a square cavity is investigated numerically with a two-component lattice Boltzmann method. The volume fraction of nanoparticles is assumed to be constant (0.03) while the Richardson (Ri) number varies from 0.02 to 20. Results show that the effectiveness of nanoparticles is better observed in the natural convection mode. However, sedimentation is also very probable at high Ri numbers, which significantly reduces the effectiveness of the nanoparticles. Configurations which produce a natural convection stream similar to the forced convection one as well as the configurations with high spacing and hence, low heat stream interactions, are the best choices for a uniform heat rate from the pipes.  相似文献   
2.
Chameleonic properties, i. e., the capacity of a molecule to hide polarity in non-polar environments and expose it in water, help achieving sufficient permeability and solubility for drug molecules with high MW. We present models of experimental measures of polarity for a set of 24 FDA approved drugs (MW 405-1113) and one PROTAC (MW 1034). Conformational ensembles in aqueous and non-polar environments were generated using molecular dynamics. A linear regression model that predicts chromatographic apparent polarity (EPSA) with a mean unsigned error of 10 Å2 was derived based on separate terms for donor, acceptor, and total molecular SASA. A good correlation (R2=0.92) with an experimental measure of hydrogen bond donor potential, Δlog Poct-tol, was found for the mean hydrogen bond donor SASA of the conformational ensemble scaled with Abraham's A hydrogen bond acidity. Two quantitative measures of chameleonic behaviour, the chameleonic efficiency indices, are introduced. We envision that the methods presented herein will be useful to triage designed molecules and prioritize those with the best chance of achieving acceptable permeability and solubility.  相似文献   
3.
The current article focuses on mass and thermal transfer analysis of a two-dimensional immovable combined convective nanofluid flow including motile microorganisms with temperature-dependent viscosity on top of a vertical plate through a porous medium, and a model has been developed to visualize the velocity slip impacts on a nonlinear partial symbiotic flow. The governed equations include all of the above physical conditions, and suitable nondimensional transfigurations are utilized to transfer the governed conservative equations to a nonlinear system of differential equations and obtain numerical solutions by using the Shooting method. Numerical studies have been focusing on the effects of intricate dimensionless parameters, namely, the Casson fluid parameter, Brownian motion parameter, thermophoresis parameter, Peclet number, bioconvection parameter, and Rayleigh number, which have all been studied on various profiles such as momentum, thermal, concentration, and density of microorganisms. The concentration boundary layer thickness and density of microorganisms increased as the Casson fluid parameter, Brownian and thermophoresis parameters increased, whereas the bioconvection parameter, Peclet number, and Rayleigh number increased. The thermal boundary layer thickness, concentration boundary layer thickness, and density of microorganisms all decreased. The velocity distribution decreases as the Peclet number, bioconvection, and thermophoresis parameters rise but rises as the Rayleigh number, Brownian motion parameter, and Casson fluid parameter rise. These are graphed via plots along with divergent fluid parameters.  相似文献   
4.
5.
磁声发射(MAE)是铁磁性材料磁化过程中产生的声发射信号,在构件应力检测和微观损伤检测中有着广泛的应用。针对MAE信号非稳态、复杂性、衰减性等特点,提出海鸥算法结合变分模态分解(SOA-VMD)的去噪方法,为克服海鸥算法求解过程中易陷入局部最优解问题,利用柯西变异算子产生随机迭代过程,使改进算法即柯西变异海欧算法(CVSOA)跳出早熟收敛。采用以幅值谱熵为适应度函数,优化VMD算法中分解模态个数K和二次惩戒因子α两个参数,将含噪声的MAE信号进行VMD分解重构。经仿真信号和实际检测信号分析表明,改进后的CVSOA-VMD算法全局寻优能力和去噪性能优于传统的SOA-VMD算法,降噪后的MAE信号特征值对于不同应力下均方根、偏斜度特征值的重复性更好,可靠性更高。  相似文献   
6.
To operate a bag filter continuously, pulse-jet cleaning of dust particles from the filter medium is commonly required, and the pulse-jet pressure significantly affects the filter performance. In this study, the accumulation structure of residual dust particles inside and on the surface of a filter medium at different pulse-jet pressures was investigated by constructing a simple model, and the influence of the dust structure on the filter performance was clarified. Using a simple model, we determined the effective ratio of filtration area β, which represents the ratio of the filterable area to the total filtration area, the true resistance coefficient due to the primary dust layer ζp’ thinly deposited on the filter surface, and the true resistance coefficient inside the filter media itself ζf. The effective ratio of filtration area β decreased with operation time for all pulse-jet pressures; however, it maintained a high value when the pulse-jet pressure was high. The validity of β analyzed by the model was verified using two different methods, and the results showed good agreement, indicating that the model is effective in identifying real conditions. The true resistance coefficient due to the primary dust layer ζp’ decreased as the pulse-jet pressure increased; however, the true resistance coefficient inside the filter media itself ζf’ was the highest at 0.5 MPa. In addition, the dust collection efficiency was different at each pulse-jet pressure, which was considered to be caused by the difference in the dust particle accumulation structure.  相似文献   
7.
In this work, a new type of FeSi/FeNi soft magnetic powder core (SMPC) was successfully fabricated by coating FeNi nanoparticles on the surface of FeSi micrometer powder. The effects of different contents of FeNi nanoparticles on the micromorphology, internal structures, and soft magnetic properties of SMPCs were studied. The results show that FeNi nanoparticles adhere to the surface of FeSi powder, which can effectively fill the air gap between FeSi powder and is beneficial to the compaction of the powder cores during the pressing process. Thus, the density of the SMPCs is increased. Compared to FeSi SMPCs, the comprehensive soft magnetic properties of FeSi/FeNi SMPCs have been greatly improved. When adding 15 wt% FeNi nanoparticles, the SMPCs exhibit excellent magnetic properties with high effective permeability (increased by 43.8 %) and low core loss (decreased by 22.1 %). The high performance FeSi/FeNi SMPCs prepared in this work are expected to be widely used in power choke coils, uninterruptible power supplies, and boosts and inverter inductors.  相似文献   
8.
The effects of three types of salt including NaF, KCl, and NaCl on the properties of NiFe2O4 nanoparticles using salt-assisted solution combustion synthesis (SSCS) have been investigated. The synthesized powders were evaluated by SEM, TEM, FTIR, XRD, and VSM analysis. Also, the specific surface area (SSA), as well as size distribution and volume of the porosities of NiFe2O4 powders were determined by the BET apparatus. The visual observations showed that the intensity and time of combustion synthesis of nanoparticles have been severely influenced by the type of salt. The highest crystallinity was observed in the synthesized powder using NaCl. The SSA has also been correlated completely to the type of salt. The quantities of SSA was achieved about 91.62, 64.88, and 47.22 m2g-1 for the powders synthesized by KCl, NaCl, and NaF respectively. Although the magnetic hysteresis loops showed the soft ferromagnetic behavior of the NiFe2O4 nanoparticles in all conditions, KCl salt could produce the particles with the least coercivity and remanent magnetization. Based on the present study, the salt type is a key parameter in the SSCS process for the preparation of spinel ferrites. Thermodynamic evaluation also showed that the melting point and heat capacity are important parameters for the proper selection of the salt.  相似文献   
9.
10.
The esophagus is a tubular-shaped muscular organ where swallowed fluids and muscular contractions constitute a highly dynamic environment. The turbulent, coordinated processes that occur through the oropharyngeal conduit can often compromise targeted administration of therapeutic drugs to a lesion, significantly reducing therapeutic efficacy. Here, magnetically guidable drug vehicles capable of strongly adhering to target sites using a bioengineered mussel adhesive protein (MAP) to achieve localized delivery of therapeutic drugs against the hydrodynamic physiological conditions are proposed. A suite of highly uniform microparticles embedded with iron oxide (IO) nanoparticles (MAP@IO MPs) is microfluidically fabricated using the genipin-mediated covalent cross-linking of bioengineered MAP. The MAP@IO MPs are successfully targeted to a specific region and prolongedly retained in the tubular-structured passageway. In particular, orally administered MAP@IO MPs are effectively captured in the esophagus in vivo in a magnetically guidable manner. Moreover, doxorubicin (DOX)-loaded MAP@IO MPs exhibit a sustainable DOX release profile, effective anticancer therapeutic activity, and excellent biocompatibility. Thus, the magnetically guidable locomotion and robust underwater adhesive properties of the proteinaceous soft microbots can provide an intelligent modular approach for targeted locoregional therapeutics delivery to a specific lesion site in dynamic fluid-associated tubular organs such as the esophagus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号