首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22461篇
  免费   1780篇
  国内免费   1429篇
电工技术   1862篇
技术理论   1篇
综合类   2888篇
化学工业   1005篇
金属工艺   400篇
机械仪表   1230篇
建筑科学   2413篇
矿业工程   1009篇
能源动力   677篇
轻工业   668篇
水利工程   965篇
石油天然气   728篇
武器工业   99篇
无线电   1128篇
一般工业技术   2004篇
冶金工业   1095篇
原子能技术   188篇
自动化技术   7310篇
  2024年   59篇
  2023年   152篇
  2022年   316篇
  2021年   400篇
  2020年   545篇
  2019年   474篇
  2018年   440篇
  2017年   560篇
  2016年   681篇
  2015年   734篇
  2014年   1601篇
  2013年   1463篇
  2012年   1801篇
  2011年   1675篇
  2010年   1362篇
  2009年   1510篇
  2008年   1448篇
  2007年   1637篇
  2006年   1439篇
  2005年   1236篇
  2004年   984篇
  2003年   863篇
  2002年   730篇
  2001年   663篇
  2000年   549篇
  1999年   427篇
  1998年   327篇
  1997年   243篇
  1996年   202篇
  1995年   191篇
  1994年   168篇
  1993年   134篇
  1992年   103篇
  1991年   83篇
  1990年   90篇
  1989年   90篇
  1988年   64篇
  1987年   31篇
  1986年   24篇
  1985年   16篇
  1984年   12篇
  1983年   12篇
  1982年   12篇
  1981年   12篇
  1980年   8篇
  1979年   9篇
  1964年   8篇
  1963年   9篇
  1961年   8篇
  1955年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Redundancy allocation problem (RAP) is one of the best-developed problems in reliability engineering studies. This problem follows to optimize the reliability of a system containing s sub-systems under different constraints, including cost, weight, and volume restrictions using redundant components for each sub-system. Various solving methodologies have been used to optimize this problem, including exact, heuristic, and meta-heuristic algorithms. In this paper, an efficient multi-objective meta-heuristic algorithm based on simulated annealing (SA) is developed to solve multi-objective RAP (MORAP). This algorithm is knowledge-based archive multi-objective simulated annealing (KBAMOSA). KBAMOSA applies a memory matrix to reinforce the neighborhood structure to achieve better quality solutions. The results analysis and comparisons demonstrate the performance of the proposed algorithm for solving MORAP.  相似文献   
2.
In this paper, a modified particle swarm optimization (PSO) algorithm is developed for solving multimodal function optimization problems. The difference between the proposed method and the general PSO is to split up the original single population into several subpopulations according to the order of particles. The best particle within each subpopulation is recorded and then applied into the velocity updating formula to replace the original global best particle in the whole population. To update all particles in each subpopulation, the modified velocity formula is utilized. Based on the idea of multiple subpopulations, for the multimodal function optimization the several optima including the global and local solutions may probably be found by these best particles separately. To show the efficiency of the proposed method, two kinds of function optimizations are provided, including a single modal function optimization and a complex multimodal function optimization. Simulation results will demonstrate the convergence behavior of particles by the number of iterations, and the global and local system solutions are solved by these best particles of subpopulations.  相似文献   
3.
The main purpose of this paper is to survey some recent progresses on control theory for stochastic distributed parameter systems, i.e., systems governed by stochastic differential equations in infinite dimensions, typically by stochastic partial differential equations. We will explain the new phenomenon and difficulties in the study of controllability and optimal control problems for one dimensional stochastic parabolic equations and stochastic hyperbolic equations. In particular, we shall see that both the formulation of corresponding stochastic control problems and the tools to solve them may differ considerably from their deterministic/finite-dimensional counterparts. More importantly, one has to develop new tools, say, the stochastic transposition method introduced in our previous works, to solve some problems in this field.  相似文献   
4.
The Vehicle Routing Problem with Simultaneous Pickup and Delivery (VRPSPD) is an extension to the classical Vehicle Routing Problem (VRP), where customers may both receive and send goods simultaneously. The Vehicle Routing Problem with Mixed Pickup and Delivery (VRPMPD) differs from the VRPSPD in that the customers may have either pickup or delivery demand. However, the solution approaches proposed for the VRPSPD can be directly applied to the VRPMPD. In this study, an adaptive local search solution approach is developed for both the VRPSPD and the VRPMPD, which hybridizes a Simulated Annealing inspired algorithm with Variable Neighborhood Descent. The algorithm uses an adaptive threshold function that makes the algorithm self-tuning. The proposed approach is tested on well-known VRPSPD and VRPMPD benchmark instances derived from the literature. The computational results indicate that the proposed algorithm is effective in solving the problems in reasonable computation time.  相似文献   
5.
In this paper, we propose a globally convergent BFGS method to solve Variational Inequality Problems (VIPs). In fact, a globalization technique on the basis of the hyperplane projection method is applied to the BFGS method. The technique, which is independent of any merit function, is applicable for pseudo-monotone problems. The proposed method applies the BFGS direction and tries to reduce the distance of iterates to the solution set. This property, called Fejer monotonicity of iterates with respect to the solution set, is the basis of the convergence analysis. The method applied to pseudo-monotone VIP is globally convergent in the sense that subproblems always have unique solutions, and the sequence of iterates converges to a solution to the problem without any regularity assumption. Finally, some numerical simulations are included to evaluate the efficiency of the proposed algorithm.  相似文献   
6.
Traditional Multiple Empirical Kernel Learning (MEKL) expands the expressions of the sample and brings better classification ability by using different empirical kernels to map the original data space into multiple kernel spaces. To make MEKL suit for the imbalanced problems, this paper introduces a weight matrix and a regularization term into MEKL. The weight matrix assigns high misclassification cost to the minority samples to balanced misclassification cost between minority and majority class. The regularization term named Majority Projection (MP) is used to make the classification hyperplane fit the distribution shape of majority samples and enlarge the between-class distance of minority and majority class. The contributions of this work are: (i) assigning high cost to minority samples to deal with imbalanced problems, (ii) introducing a new regularization term to concern the property of data distribution, (iii) and modifying the original PAC-Bayes bound to test the error upper bound of MEKL-MP. Through analyzing the experimental results, the proposed MEKL-MP is well suited to the imbalanced problems and has lower generalization risk in accordance with the value of PAC-Bayes bound.  相似文献   
7.
The paper concerns an analysis of an equilibrium problem for 2D elastic body with two semirigid inclusions. It is assumed that inclusions have a joint point, and we investigate a junction problem for these inclusions. The existence of solutions is proved, and different equivalent formulations of the problem are proposed. We investigate a convergence to infinity of a rigidity parameter of the semirigid inclusion. It is proved that in the limit, we obtain an equilibrium problem for the elastic body with a rigid inclusion and a semirigid one. A parameter identification problem is investigated. In particular, the existence of a solution to a suitable optimal control problem is proved.  相似文献   
8.
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease-19 (COVID-19) being associated with severe pneumonia. Like with other viruses, the interaction of SARS-CoV-2 with host cell proteins is necessary for successful replication, and cleavage of cellular targets by the viral protease also may contribute to the pathogenesis, but knowledge about the human proteins that are processed by the main protease (3CLpro) of SARS-CoV-2 is still limited. We tested the prediction potentials of two different in silico methods for the identification of SARS-CoV-2 3CLpro cleavage sites in human proteins. Short stretches of homologous host-pathogen protein sequences (SSHHPS) that are present in SARS-CoV-2 polyprotein and human proteins were identified using BLAST analysis, and the NetCorona 1.0 webserver was used to successfully predict cleavage sites, although this method was primarily developed for SARS-CoV. Human C-terminal-binding protein 1 (CTBP1) was found to be cleaved in vitro by SARS-CoV-2 3CLpro, the existence of the cleavage site was proved experimentally by using a His6-MBP-mEYFP recombinant substrate containing the predicted target sequence. Our results highlight both potentials and limitations of the tested algorithms. The identification of candidate host substrates of 3CLpro may help better develop an understanding of the molecular mechanisms behind the replication and pathogenesis of SARS-CoV-2.  相似文献   
9.
We consider robust knapsack problems where item weights are uncertain. We are allowed to query an item to find its exact weight,where the number of such queries is bounded by a given parameter Q. After these queries are made, we need to pack the items robustly, i.e., so that the choice of items is feasible for every remaining possible scenario of item weights.The central question that we consider is: Which items should be queried in order to gain maximum profit? We introduce the notion of query competitiveness for strict robustness to evaluate the quality of an algorithm for this problem, and obtain lower and upper bounds on this competitiveness for interval-based uncertainty. Similar to the study of online algorithms, we study the competitiveness under different frameworks, namely we analyze the worst-case query competitiveness for deterministic algorithms, the expected query competitiveness for randomized algorithms and the average case competitiveness for known distributions of the uncertain input data. We derive theoretical bounds for these different frameworks and evaluate them experimentally. We also extend this approach to Γ-restricted uncertainties introduced by Bertsimas and Sim.Furthermore, we present heuristic algorithms for the problem. In computational experiments considering both the interval-based and the Γ-restricted uncertainty, we evaluate their empirical performance. While the usage of a Γ-restricted uncertainty improves the nominal performance of a solution (as expected), we find that the query competitiveness gets worse.  相似文献   
10.
Based on the current spin density functional theory, a theoretical model of three vertically aligned semiconductor quantum dots is proposed and numerically studied. This quantum dot molecule (QDM) model is treated with realistic hard-wall confinement potential and external magnetic field in three-dimensional setting. Using the effective-mass approximation with band nonparabolicity, the many-body Hamiltonian results in a cubic eigenvalue problem from a finite difference discretization. A self-consistent algorithm for solving the Schrödinger-Poisson system by using the Jacobi-Davidson method and GMRES is given to illustrate the Kohn-Sham orbitals and energies of six electrons in the molecule with some magnetic fields. It is shown that the six electrons residing in the central dot at zero magnetic field can be changed to such that each dot contains two electrons with some feasible magnetic field. The Förster-Dexter resonant energy transfer may therefore be generated by two individual QDMs. This may motivate a new paradigm of Fermionic qubits for quantum computing in solid-state systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号