首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   861篇
  免费   154篇
  国内免费   68篇
电工技术   19篇
综合类   35篇
化学工业   284篇
金属工艺   127篇
机械仪表   23篇
建筑科学   1篇
矿业工程   5篇
能源动力   74篇
轻工业   16篇
石油天然气   3篇
武器工业   4篇
无线电   133篇
一般工业技术   311篇
冶金工业   26篇
原子能技术   4篇
自动化技术   18篇
  2024年   2篇
  2023年   26篇
  2022年   43篇
  2021年   61篇
  2020年   49篇
  2019年   69篇
  2018年   57篇
  2017年   59篇
  2016年   48篇
  2015年   44篇
  2014年   65篇
  2013年   64篇
  2012年   63篇
  2011年   64篇
  2010年   39篇
  2009年   66篇
  2008年   55篇
  2007年   40篇
  2006年   41篇
  2005年   27篇
  2004年   24篇
  2003年   24篇
  2002年   19篇
  2001年   10篇
  2000年   7篇
  1999年   12篇
  1998年   3篇
  1997年   1篇
  1991年   1篇
排序方式: 共有1083条查询结果,搜索用时 15 毫秒
1.
一维ZnO纳米结构的电子场发射研究   总被引:1,自引:0,他引:1  
在大量制备一维ZnO纳米结构的基础上,研究了这些纳米结构的场发射性能。对于四角状ZnO纳米结构,获得1.0m Ac/m2的电流密度只需要4.5V/μm的电场;对于线状Z nO纳米结构,获得1.0mAc/m 2的电流密度需要6.5V/μm的电场。由于其特殊的结构,四角状ZnO一维纳米结构在真空电子器件方面有很好的应用前景。  相似文献   
2.
The possibility of utilizing nanopowders of iron and Fe-Co-Ni produced bu a thermochemical method in the fabrication of sealing composition materials is investigated. It is established that such hermetic sealing composition materials function reliably under extremal conditions and guarantee elevated strength of adhesion to the surface of the metal and high corrosion and temperature stability. __________ Translated from Poroshkaya Metallurgiya, Nos. 3–4(448), pp. 112–117, March–April, 2006.  相似文献   
3.
Nanostructured C-Cu thin films were deposited by reactive sputtering method and co-sputtering method. The relationships between microstructures, properties, and depo-sition parameters were studied and the results obtained from TEM, AFM, and XPS.indicate that the thin films are nanostructural, and have good in-depth uniformity. Theselected area electron diffraction (SAED) found that the nanosize Cu particles havethe fcc structure and the others are amorphous carbon or nanocrystallized graphiticcarbon. The peak positions of the Cu and C in XPS indicate them to be at the ele-mental state. In the IR transmission spectrum, diamond two-phonon absorption andgraphite Raman peaks were observed, which suggests microcrystal diamond particlesand graphite components exist in the C-Cu film. The higher electrical resistivity wasobtained.  相似文献   
4.
Fabrication of cost-effective, nano-grained net-shaped components has brought considerable interest to Department of Defense, National Aeronautics and Space Administration, and Department of Energy. The objective of this paper is to demonstrate the versatility of electron beam-physical vapor deposition (EB-PVD) technology in engineering new nanostructured materials with controlled microstructure and microchemistry in the form of coatings and net-shaped components for many applications including the space, turbine, optical, biomedical, and auto industries. Coatings are often applied on components to extent their performance and life under severe environmental conditions including thermal, corrosion, wear, and oxidation. Performance and properties of the coatings depend upon their composition, microstructure, and deposition condition. Simultaneous co-evaporation of multiple ingots of different compositions in the high energy EB-PVD chamber has brought considerable interest in the architecture of functional graded coatings, nano-laminated coatings, and design of new structural materials that could not be produced economically by conventional methods. In addition, high evaporation and condensate rates allowed fabricating precision net-shaped components with nanograined microstructure for various applications. Using EB-PVD, nano-grained rhenium (Re) coatings and net-shaped components with tailored microstructure and properties were fabricated in the form of tubes, plates, and Re-coated spherical graphite cores. This paper will also present the results of various metallic and ceramic coatings including chromium, titanium carbide (TiC), titanium diboride (TiB2), hafnium nitride (HfN), titanium-boron-carbonitride (TiBCN), and partially yttria stabilized zirconia (YSZ) TBC coatings deposited by EB-PVD for various applications. This paper was presented at the International Symposium on Manufacturing, Properties, and Applications of Nanocrystalline Materials sponsored by the ASM International Nanotechnology Task Force and TMS Powder Materials Committee, October 18–20, 2004, Columbus, OH.  相似文献   
5.
Nanoscale Studies of the Early Stages of Oxidation of a TiAl-Base Alloy   总被引:2,自引:0,他引:2  
The strategy to perform nanoscale studies of the initial stages of oxidation of TiAl involved first gaining some information on the electronic structure of pure TiO2 surfaces and then on TiAl surfaces before and after oxidation both in low- and high-oxygen potentials. Both materials were studied in atomically-cleaned states generated by repeated sputtering and heating. It was found that the oxygen vacancies created additional defect states in the band gap of stoichiometric TiO2. The results obtained on TiO2 were used as fingerprints to study the oxide nucleation. The results on the initial stages of oxidation of TiAl confirm the nucleation of Ti2O3 islands of nanometer size and monolayer height in a low-oxygen-pressure environment, whilst a TiO2 layer developed in an atmospheric environment. The ledges on atomically-cleaned surfaces usually acted as nucleation sites.  相似文献   
6.
混合碱法是以熔融的无水混合碱(氢氧化钠和氢氧化钾)做为溶剂,以成本低廉的氧化物和金属无机盐作为反应物,在常压,200℃左右合成陶瓷粉体的方法.混合碱法合成微米甚至纳米结构的粉体具有成本低,温度低,粉体结构的生长可以得到有效的控制的优点,因此混合碱法是一种快速制备粉体的比较理想方法.  相似文献   
7.
Epitaxial CoFe2O4 (CFO) and SrRuO3 (SRO) nanopillar heterostructures were deposited on Pb(Mg1/3Nb2/3)0.70Ti0.30O3 (PMN-30PT) single crystal substrates by switch pulsed laser deposition (SPLD). Since the CFO nanopillars are insulating, and the SRO matrix conductive, this self-assembled nanopillar heterostructure served as a patterned electrode on PMN-PT, which then enhances the dielectric and piezoelectric constant of the substrate. Cross-sectional electron microscopy images revealed the formation of a nanopillar heterostructure layer with CFO nanopillars within a SRO matrix. AFM and XRD revealed good topography and epitaxy, indicating a high quality SRO-CFO self-assembled nanopillar structure. Using a SRO-CFO thin film patterned electrode, PMN-PT was found to have a notably higher (30%) dielectric constant with increasing electric field and enhanced transverse broadening in reciprocal spacing mapping (RSM) scans.  相似文献   
8.
This study reports a green and powerful strategy for preparing cellulose nanocrystal (CNC)/graphene oxide (GO)/natural rubber (NR) nanocomposites hosting a 3D hierarchical conductive network. Due to good dispersibility and amphiphilic nature of CNC, well dispersed CNC/GO nanohybrids were prepared. Hydrogen bonding interactions between CNC and GO greatly enhanced the stability of the CNC/GO nanohybrids. CNC/GO nanohybrids were introduced into NR latex under sonication and the mixture was cast. Self-assembled CNC/GO nanohybrids preferentially dispersed in the interstice between latex microspheres allowing the construction of a 3D hierarchical conductive network. By combining strong hydrogen bonds and 3D conductive network, both electrical conductivity and mechanical properties (tensile strength and modulus) have been significantly improved. The electrical conductivity of the nanocomposite with 4 wt% GO and 5 wt% CNC exhibited an increase of nine orders of magnitude compared to the nanocomposite with only 4 wt% GO; meanwhile, the electrical percolation threshold was 3-fold lower than for NR/GO composites.  相似文献   
9.
A novel kind of vacancy-rich nanowire arrays were prepared by reducing rough Co3O4 nanowires with NaBH4 solution on 3D nickel foam at room temperature for overall water splitting. Co3O4/NF treated by NaBH4 for 10 min was highly active for oxygen evolution reaction (OER) and simultaneously efficient for hydrogen evolution reaction (HER) with the need of the overpotentials of 240 and 132 mV to drive 10 mA·cm-2 in alkaline media, respectively. Furthermore, the electrocatalysts as both cathode and anode in a two-electrode system presented excellent durability for over 60 h at 10 mA·cm-2, maintaining the cell voltage of merely 1.63 V. This work provides new methods and ideas for the preparation of transition metal oxide bifunctional electrocatalysts rich in oxygen vacancies.  相似文献   
10.
To improve the electrochemical lithium storage performance of molybdenum nitrides, Mo2N quantum dots@nitrogen-doped graphene oxide sponge (Mo2N-QDs@Ngs) was prepared by hydrothermal reaction, freeze-drying and calcination in H2/N2 mixture with ammonium molybdate ((NH4)Mo7O24·4H2O), hexamethylenetetramine (C6H12N4) and graphene oxide (GO) as raw materials. The effect of GO content on the electrochemical lithium storage performance was investigated. The transmission electron microscope (TEM) results show that the size of the prepared Mo2N quantum dots is about 2—5 nm, and the Mo2N quantum dots are uniformly distributed on the surface of nitrogen-doped graphene. The electrochemical test results show that when the GO content is 30%, the prepared Mo2N-QDs@Ngs-30 has the best electrochemical lithium storage performance, which has 699 mA·h·g-1 specific capacity at the current density of 0.1 A·g-1, and has 286 mA·h·g-1 specific capacity even at the current density of 2 A·g-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号