首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15316篇
  免费   1602篇
  国内免费   699篇
电工技术   1745篇
技术理论   1篇
综合类   1273篇
化学工业   3687篇
金属工艺   413篇
机械仪表   500篇
建筑科学   593篇
矿业工程   1137篇
能源动力   4278篇
轻工业   153篇
水利工程   125篇
石油天然气   572篇
武器工业   477篇
无线电   190篇
一般工业技术   815篇
冶金工业   1183篇
原子能技术   91篇
自动化技术   384篇
  2024年   47篇
  2023年   197篇
  2022年   416篇
  2021年   468篇
  2020年   533篇
  2019年   368篇
  2018年   392篇
  2017年   429篇
  2016年   431篇
  2015年   449篇
  2014年   802篇
  2013年   721篇
  2012年   964篇
  2011年   1148篇
  2010年   858篇
  2009年   947篇
  2008年   795篇
  2007年   1116篇
  2006年   940篇
  2005年   849篇
  2004年   781篇
  2003年   681篇
  2002年   613篇
  2001年   494篇
  2000年   438篇
  1999年   338篇
  1998年   254篇
  1997年   230篇
  1996年   190篇
  1995年   160篇
  1994年   121篇
  1993年   92篇
  1992年   85篇
  1991年   47篇
  1990年   54篇
  1989年   40篇
  1988年   20篇
  1987年   25篇
  1986年   9篇
  1985年   23篇
  1984年   18篇
  1983年   5篇
  1982年   14篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1959年   2篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
1.
《Ceramics International》2022,48(8):10601-10612
Using MgC2O4, Mg powders as raw materials and Ni(NO3)2?6H2O as a catalyst, CNTs/MgO composite powders were prepared by a catalytic combustion synthesis method. The CNTs/MgO composite powders were characterized by XRD, Raman spectroscopy, FESEM/EDS and HRTEM. The effects of catalyst content on the degree of graphitization and aspect ratio of the CNTs in composite powders were investigated. Moreover, the thermal shock resistance of low-carbon Al2O3–C refractories after adding the composite powder was investigated. The results indicated that the CNTs prepared with 1 wt% Ni(NO3)2?6H2O addition had a higher degree of graphitization and aspect ratio. In particular, the aspect ratio could reach approximately 200. The growth mechanism of hollow bamboo-like CNTs in the composite powders was proven to be a V-L-S mechanism. The thermal shock resistance of Al2O3–C samples could be improved significantly after adding CNTs/MgO composite powders. In particular, compared with CM0, the residual strength ratio of Al2O3–C samples with added 2.5 wt% composite powders could be increased 63.9%.  相似文献   
2.
The use of a Pt-based catalyst was evaluated for autocatalytic hydrogen recombination. The Pt was supported on a mixture of Ce-, Zr- and Y-oxides (CZY) to yield nanosized Pt particles. The Pt/CZY/AAO catalyst was then prepared by the spray-deposition of the Pt/CZY intermediate onto an anodized aluminium oxide (AAO) layer on a metallic aluminum core. The Pt/CZY/AAO catalyst (3 × 1 cm) was evaluated for hydrogen combustion (1–8 vol% hydrogen in the air) in a recombiner section testing station. The thermal distribution throughout the catalyst surface was investigated using an infrared camera. The maximum temperature gradient (ΔT) for the examined hydrogen concentrations did not exceed 36 °C. The Pt/CZY/AAO catalyst was also evaluated for prolonged hydrogen combustion duration to assess its durability. An average combustion temperature of 239.0 ± 10.0 °C was maintained for 53 days of catalytic hydrogen combustion, suggesting that there was limited, or no, catalyst deactivation. Finally, a Pt/CZY/AAO catalytic plate (14.0 × 4.5 cm) was prepared to investigate the thermal distribution. An average surface temperature of 212.5 °C and a maximum ΔT of 5.4 °C was obtained throughout the catalyst surface at a 3 vol% hydrogen concentration.  相似文献   
3.
The effect of heat loss on the syngas production from partial combustion of fuel-rich in a divergent two-layer burner is numerically studied using two-dimensional model with detailed kinetics GRI-Mech 1.2. Both the radiation and wall heat losses to the surrounding are considered in the computations. It is shown that two types heat losses have different effects on the syngas production. The radiation heat loss has significant effect on the syngas temperature and the syngas temperature is dropped as radiation heat loss is increased, but it has neglected effect on the reforming efficiency and methane conversion efficiency. The wall heat loss has a comprehensive effect on the syngas production. The wall heat loss not only reduces the conversion efficiency, but also significantly decreases the syngas temperature. The effect of wall heat loss becomes weak as the equivalence is increased. The reforming efficiency drops from 0.440 to 0.424 for equivalence ratio of 2 and mixture velocity of 0.17 m/s for the predictions between adiabatic wall and non-adiabatic conditions.  相似文献   
4.
《Advanced Powder Technology》2020,31(12):4585-4597
Focussing on visible light active ferrites for high performance removal of noxious pollutants, we report the synthesis of Mg0.5NixZn0.5-xFe2O4 (x = 0.1, 0.2, 0.3, 0.4, & 0.5) ferrite nanoparticle for degradation of reactive blue-19 (RB-19). Lattice parameters calculated using intense X-ray diffraction (XRD) peaks and Nelson-Riley plots (N-R plot) are in well agreement with each other. The sample Mg0.5Ni0.4Zn0.1Fe2O4 (M5N4) exhibits best performance with 99.5% RB-19 degradation in 90 min under visible light. Photoluminescence (PL) results confirm that recombination of charge carriers is highly reduced in the photocatalyst. Scavenging experiments suggest that O2 radicals were the dominant species responsible for photocatalytic performance. The photocatalytic mechanism was explained in terms of dopant driven shifting of conduction bands and valence bands (calculated by Mott-Schottky plots). The thermodynamic probability of radical generation along with role of redox cycles of metal ions has been discussed in the mechanism. The dye degradation was ascertained by detection of intermediates via mass spectrometry analysis and a possible degradation route was also predicted. The findings in this work provide intriguing opportunities to modify the electronic band structure of spinel ferrites for visible and solar light photocatalytic activity for environmental detoxification.  相似文献   
5.
The explosion venting duct can effectively reduce the hazard degree of a gas explosion and conduct the venting energy to the safe area. To investigate the flame quantitative propagation law of explosion venting with a duct, the effects of hydrogen fraction and explosion venting duct length on jet flame propagation characteristics of premixed H2-air mixtures were analyzed through experiment and simulation. The experiment results under initial conditions of room temperature and 1 atm show that when hydrogen fraction was high enough, part of the unburned hydrogen was mixed with air again to reach an ignitable concentration, resulting in the secondary combustion was easier produced and the duration of the secondary flame increased. With the increase of venting duct length, the flame front distance and propagation velocity increased. Meanwhile, the spatial distribution of pressure field and temperature field, and the propagation process and mechanism of the flame venting with a duct were analyzed using FLUENT software. The variation of the pressure wave and the pressure reflection oscillation law in the explosion venting duct was captured. Therefore, in the industrial explosion venting design with a duct, the hazard caused by the coupling of venting pressure and venting flame under different fractions should be considered comprehensively.  相似文献   
6.
Carbon-and-oxygen-doped AlN specimens were prepared by combustion synthesis using Al, graphite, and AlN. Graphite addition changed the product color from white to blue. By XRD, the lattice constant increased slightly with increasing carbon content. Blue AlN powder was synthesized with a molar ratio of the diluent AlN of 0.2-0.5 with a fixed graphite content of 0.05. At an AlN molar ratio exceeding 0.6, carbon was not successfully incorporated due to the lower reaction temperature. Calcination at 800°C in air removed residual graphite without changing the crystal structure or product color. Oxygen, nitrogen, and carbon analyses revealed that blue AlN powders contained 0.45-0.54 mass% carbon and 1.4-1.6 mass% oxygen, while the undoped AlN contained 0.021 mass% carbon and 0.94 mass% oxygen. The origin of the white-to-blue color change was investigated via reflection measurements. Blue AlN exhibits an absorption peak at 634 nm (1.96 eV). From first-principles electronic structure calculations, the C-doped AlN and carbon-and-oxygen-doped AlN with a 1:1 ratio could be classified as p-type, whereas the O-doped AlN and 1:3 carbon-and-oxygen-doped AlN were n-type. One reason for the absorption peak at 634 nm may be a transition from the conduction band to an upper unoccupied state. These results suggest the possible control of optical and electronic properties of AlN via carbon-and-oxygen doping.  相似文献   
7.
This paper introduces two novel nonlinear stochastic attitude estimators developed on the Special Orthogonal Group with the tracking error of the normalized Euclidean distance meeting predefined transient and steady‐state characteristics. The tracking error is confined to initially start within a predetermined large set such that the transient performance is guaranteed to obey dynamically reducing boundaries and decrease smoothly and asymptotically to the origin in probability from almost any initial condition. The proposed estimators produce accurate attitude estimates with remarkable convergence properties using measurements obtained from low‐cost inertial measurement units. The estimators proposed in continuous form are complemented by their discrete versions for the implementation purposes. The simulation results illustrate the effectiveness and robustness of the proposed estimators against uncertain measurements and large initialization error, whether in continuous or discrete form.  相似文献   
8.
Ferrites may contain single domain particles which gets converted into super-paramagnetic state near critical size. To explore the existence of these characteristic feature of ferrites, we have performed magnetization(M-H loop) and Mössbauer spectroscopic studies of Ni2+ substitution effect in Co1-xNixFe2O4 (where x?=?0, 0.25, 0.5, 0.75 and 1) nanoparticles were fabricated by solution combustion route using mixture of carbamide and glucose as fuels for the first time. As prepared samples exhibit spinel cubic structure with lattice parameters which decreases linearly with increase in Ni2+ concentration. The M-H loops reveals that saturation magnetization(Ms), coercive field(Hc) remanence magnetization(Mr) and magnetron number(ηB) decreases significantly with increasing Ni2+ substitution. The variation of saturation magnetization has been explained on the basis of Neel's molecular field theory. The coercive field(Hc) is found strongly dependent on the concentration of Ni2+ and decrease of coercivity suggests that the particles have single domain and exhibits superparamagnetic behavior. The Mössbauer spectroscopy shows two ferrimagnetically relaxed Zeeman sextets distribution at room temperature. The dependence of Mössbauer parameters such as isomer shift, quadru pole splitting, line width and hyperfine magnetic field on Ni2+ concentration have been discussed. Hence our results suggest that synthesized materials are potential candidate for power transformer application.  相似文献   
9.
The flame front deformation instability of low-velocity filtration combustion within an inert packed bed is studied based on the initial preheating non-uniformity. Based on the experimental phenomena, an initial thermal perturbation model is numerically proposed so as to predict the deformation behaviors of the flame front instabilities. The numerical prediction indicates that the assumption of an initial thermal perturbation is a feasible explanation as the cause of the flame front inclination instability. As the initial thermal perturbation increases, the phenomena of the flame front break and shrinking instabilities could easily occur at high filtration velocity or low equivalence ratio. Moreover, the evolutions of the flame front break rate and the shrinking rate are quantitatively analyzed.  相似文献   
10.
套保稠油油田火烧油层可行性分析   总被引:2,自引:1,他引:1  
从火烧油层的筛选标准、实际地质条件及室内物理模拟实验入手,对该油田火烧可行性进行了分析。分析结果认为,套保油田进行火烧总体上是可行的,在实际火烧时应避开底水的影响,火烧区域应选在构造高部位或仅烧其主力层。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号