首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
综合类   1篇
化学工业   3篇
能源动力   7篇
一般工业技术   2篇
  2023年   1篇
  2022年   3篇
  2020年   3篇
  2017年   1篇
  2014年   3篇
  2012年   1篇
  2007年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(14):19818-19823
The aim of the present study was to examine the anti-coking and anti-carburizing behavior of amorphous AlPO4 coating. So, aluminum phosphate composition was synthesized by sol-gel process and applied on the AISI 304 stainless steel by dip coating technique. Anti-coking performance was examined in a tube furnace at 1000 °C for 30 min under Ethane (C2H6) atmosphere. Carburizing test was performed in a sealed charcoal medium at 1100 °C for a total of 30 h exposure time. Phase composition of the samples was analyzed by X-Ray Diffraction (XRD) after coking and carburizing tests. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) were employed to study the morphology and elemental analysis of the samples after coke and carbon formation experiments. Microhardness indenter was applied on the cross section of the carbon-exposed specimens to plot the hardness profile through the carburizing zone. The results of the coking experiment revealed catalytic coke formed on the uncoated surface, while irregular spherical coke with no trace of catalytic coke was formed on the coated surface, indicating the great anti-coking performance of the amorphous AlPO4 coating. The results of pack-carburizing test demonstrated that the thickness of the carbide layer formed on the bare surface was ~10 times greater than that of the coated sample. Hardness measurement for the amorphous AlPO4 coated sample detected lower values compared to those for the uncoated one at all distances from the surface, indicating less carbon diffusion occurred beneath the coated surface. In overall, the results declared that the amorphous AlPO4 coating could be a good candidate for surface protection of stainless steel against catalytic coke formation and carbon diffusion.  相似文献   
2.
《Ceramics International》2020,46(6):7774-7782
In order to inhibit the metal catalytic coking and improve oxidation resistance of single TiN coating, the TiN/Al2O3 double layer coatings were designed as a chemically inert coating for methylcyclohexane supercritical pyrolysis. Internal TiN coatings were prepared by atmospheric pressure chemical vapor deposition using TiCl4–H2–N2 system. The external Al2O3 coatings with different thicknesses were prepared on the TiN surface by polymer-assisted deposition, and the coating with the most suitable thickness was further annealed at different temperatures of 600, 700, 800 and 900 °C. The morphology, elemental and phase composition of TiN/Al2O3 coatings were characterized by SEM, EDX and XRD respectively. The chemical state information of the coating elements was based on Ti 2p, Al 2p core level X-ray photoelectron spectroscopy (XPS) spectra. The results indicated that the external Al2O3 coating will partially peel off at 900 °C annealing temperature. The thermogravimetric analysis results indicated that all TiN/Al2O3 coatings show better oxidation resistance than single-layer TiN coating. The anti-coking test with methylcyclohexane supercritical pyrolysis showed that the TiN/Al2O3 coatings can effectively cover the metal catalytic sites and eliminate metal catalytic coking. However, the acid sites of external Al2O3 coating slightly promoted coking, so the anti-coking ratios of TiN/Al2O3 coatings were smaller than that of TiN. Thus, the addition of external Al2O3 coating can greatly improve the oxidation resistance of TiN coatings with little loss of coking resistance.  相似文献   
3.
Ni/xPr-Al2O3 (x = 5, 10, 15, 20 wt%) catalysts with an application in autothermal reforming of methane were prepared by sequential impregnation synthesis; its catalytic performance was evaluated and compared with that of Ni/γ-Al2O3 catalyst; the physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The results showed that Pr addition promoted the reduction of nickel particle size on the surface. TPR experiments suggested a heterogeneous distribution of nickel oxide particles over xPr-Al2O3 supports and the promotion of NiO reduction by Pr modification. The CH4 conversion increased with elevating levels of Pr addition from 5% to 10%, then decreased with Pr content from 10% to 20%. For the stability catalytic tests, Ni/xPr-Al2O3 catalysts maintained the high activity after 48 h while Ni/Al2O3 had a significant deactivation.  相似文献   
4.
In this paper, a series of alkaline earth metals oxides doped Ni/La2O3–Al2O3 catalysts were synthesized by the coprecipitation method combined with two step impregnation methods. n-decane reforming was used to investigate these catalysts, in order to develop an excellent catalyst with better hydrogen selectivity, activity, stability, as well as lower carbon deposition. Deactivation by carbon deposition, the catalyst regenerability and stability tests were also used to weigh the selected catalyst. These catalysts are characterized by N2 adsorption-desorption, XRD, NH3-TPD, Raman, and TEM. The introduction of alkaline earth metals modifiers enhances the activity, stability and anti-coking ability, meanwhile the SrO modified Ni/La2O3–Al2O3 shows the best catalytic activity. Moreover, the hydrogen selectivity and conversion over regenerative Ni/La2O3–Al2O3/SrO catalysts were quite close to the results of fresh ones. The enhancements of M oxides doped catalysts (especially Sr) can be due to the improved textural properties, basicity, metal-support interaction and anti-coking ability. As a consequence, loading different metals in different ways helps to gradually improve the stability, activity and coking inhibition of catalysts is an effective approach to obtain a multi-function catalyst.  相似文献   
5.
《Ceramics International》2017,43(4):3818-3823
Previous work has shown that both TiN and TiO2 coatings can inhibit the metallic catalytic coking effectively, but both of them have their own shortage. In this work, TiC coating was prepared on the surface of SS304 tube using TiCl4-CH4-H2 by CVD method. Its morphology, elemental composition, thickness and oxidation resistance were characterized by SEM, EDX, metalloscopy and TPO tests, respectively. The results show that CVD TiC coating is gray, homogeneous, and dense without cracks or holes. The TiC coating presents a cuboid particle structure with the sizes of about 1.0 µm for the cuboid crystals, and the Ti/C ratio close to 1:1, while the average thickness is about 11.62 µm. TPO results show that the TiC coating begins to react with O2 and release CO2 at about 810 °C. Compared with the TiN coating (The initial oxidation temperature of TiN is about 350 °C), the oxidation resistance of TiC coating is improved substantially. As a conclusion, the high oxidation resistance order is TiO2 coating>TiC coating>TiN coating. Furthermore, the temperature programmed cracking of RP-3 Chinese jet fuel was employed to compare the anti-coking performance of TiN, TiO2 and TiC coatings. The results show that each of TiN, TiO2 and TiC coating has obvious anti-coking effect, and the anti-coking performance order is TiN coating=TiC coating>TiO2 coating.  相似文献   
6.
利用低氧分压法在已服役炉管的内表面制备防结焦氧化膜。用扫描电子显微镜(SEM)、能谱仪(EDAX)、X射线衍射仪(XRD)及划痕仪等实验手段,研究已服役炉管及氧化膜的形貌、组织结构、氧化膜与基体结合状况及氧化膜的抗结焦性能。结果表明,经过低氧分压处理后,已服役炉管试样表面的Fe,Ni元素含量降低,表面形成了以MnCr2O4和Cr2O3为主的氧化膜,氧化膜的临界载荷为9.25N,结焦抑制率达到69.92%,具有明显的防催化结焦效果。  相似文献   
7.
《能源学会志》2020,93(2):605-613
The Fe-, Co-, Cu-loaded HZSM-5 zeolites were prepared via impregnation method. The upgrading by catalyst on biomass pyrolysis vapors was conducted over modified zeolites to investigate their catalytic upgrading performance and anti-coking performance. The Brønsted acid sites amount on Cu-,Co-loaded HZSM-5 decreased sharply, while that of Lewis both increased. The yield of liquid fraction and refined bio-oil over metal loaded ZSM-5 catalysts decreased, while that of char almost kept constant. The physical property of refined bio-oil was promoted in terms of pH value, dynamic viscosity and higher heating value (HHV). FT-IR analysis revealed that the chemical structure of refined bio-oil obtained over Fe-, Co-, Cu-loaded HZSM-5 zeolites was highly similar. The yield of monocyclic aromatic and aliphatic hydrocarbon over Fe-,Co-loaded HZSM-5 were boosted by around 2.5 times compared with original ZSM-5 zeolites. Data analysis revealed that Cu/HZSM-5 presented the worst deoxygenation ability. The anti-coking capability of Fe/HZSM-5 was obviously better, i.e., the coke content showed an approximate decrease of 38%. Thus, this study provided an efficient Fe/HZSM-5 catalysts for preparation of bio-oil derived from catalytic upgrading of biomass pyrolysis vapor.  相似文献   
8.
涂层技术在乙烯裂解装置抗结焦中的应用   总被引:3,自引:0,他引:3  
分析了目前乙烯裂解装置中产生结焦现象的原因,鉴于涂层技术在乙烯裂解装置抗结焦应用中的优势,重点介绍了涂层技术在抗结焦中应用的研究进展,并提出了该技术在乙烯裂解装置中实现工业化的建议。  相似文献   
9.
Ni/xY2O3–Al2O3 (x = 5, 10, 15, 20 wt%) catalysts were prepared by sequential impregnation synthesis. The catalytic performance for the autothermal reforming of methane was evaluated and compared with Ni/γ-Al2O3 catalyst. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The decrease of nickel particle size and the change of reducibility were found with Y modification. The CH4 conversion increased with elevating levels of Y2O3 from 5% to 10%, then decreased with Y content from 10% to 20%. Ni/xY2O3–Al2O3 catalysts maintained high activity after 24 h on stream, while Ni/Al2O3 had a significant deactivation. The characterization of spent catalysts indicated that the addition of Y retarded Ni sintering and decreased the amount of coke.  相似文献   
10.
Producing hydrogen from ethanol steam reforming (ESR) is a carbon-neutral and environment-friendly method, which has been expected to gradually reduce excessive emission of environmental pollution and over-exploitation of fossil resources. Low-cost nickel (Ni) and cobalt (Co) are considered the most promising active metals for industrial ESR catalysts, with the challenge that carbon deposition on such catalysts causes active site loss which limits their application. In this review, comprehensive knowledge on the ESR reaction mechanism and carbon deposition process were summarized. Based on understanding of the reaction mechanism, an anti-coking strategy keeping a balance between C–C bond scission and oxidation of hydrocarbon species was proposed. Two aspects of this strategy, including (i) enhanced C–C bond scission capability of metal, (ii) promoting effects of support for protecting the activity of metal particles and removing surface carbon, were particularly described. The revelation between the intermediate reaction and modification strategy enables the successful design of new and stable catalysts for improving anti-coking ability. This review not only shed light to the development of high-performance industrial ESR catalysts, but also contribute an innovative perspective to understand anti-coking mechanism for steam reforming of CH3CHO, CH3COOH, CH3COCH3, and even crude bio-oil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号