首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   2篇
  国内免费   6篇
综合类   2篇
化学工业   33篇
金属工艺   52篇
机械仪表   6篇
建筑科学   3篇
矿业工程   1篇
轻工业   6篇
一般工业技术   13篇
冶金工业   11篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2015年   1篇
  2014年   6篇
  2013年   3篇
  2012年   7篇
  2011年   8篇
  2010年   8篇
  2009年   13篇
  2008年   7篇
  2007年   11篇
  2006年   12篇
  2005年   7篇
  2004年   7篇
  2003年   4篇
  2002年   1篇
  2000年   2篇
  1999年   2篇
  1998年   6篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   5篇
  1989年   1篇
  1987年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
1.
A numerical analysis of galvanic corrosion of a Zn/Fe interface beneath a thin layer electrolyte is presented. Specifically, a circular defect, where the zinc coating has been removed, is considered. It is assumed that both oxygen reduction and iron oxidation can occur on the Fe surface, while only zinc oxidation occurs on the Zn surface. The importance of electrolyte thickness and conductivity and defect radius is considered. It is assumed that the iron and zinc oxidation rates are described by a Tafel relationship. If the kinetic parameters of the oxidation reactions are known, the cathodic protection of Fe is a function of a Wagner number, the ratio of the electrolyte thickness to the defect radius, and the ratio of the radius of the defect to the outer radius of the zinc layer.  相似文献   
2.
The effects of corrosive environments on adhesive bonds to electro-galvanized, zinc/aluminum alloy coated, coated electro-galvanized, and cold-rolled steels have been investigated. Bonds prepared using a rubber-modified dicyandiamide-cured epoxy adhesive, an epoxy-modified poly(vinyl chloride)-based adhesive, an acrylic-modified poly(vinyl chloride)-based adhesive a one-part urethane adhesive, and a two-component epoxy-modified acrylic adhesive were exposed under no-load conditions to constant high humidity or cyclic corrosion exposure for 50 days or 50 cycles (10 weeks) respectively.

Over the course of this study, exposure to constant high humidity had little effect on lap shear strength for any of the systems studied. Bond failures were initially cohesive, and with few exceptions remained so.

Bond strength retention under the cyclic corrosion exposure conditions employed was strongly dependent on adhesive composition and on substrate type. On galvanized substrates, lap shear strengths for the poly(vinyl chloride)-based adhesives were reduced by 90-100% during the course of the corrosion exposure, and a change in the mode of bond failure (from cohesive to interfacial) was observed. On the coated electro-galvanized steel substrate, the poly(vinyl chloride)-based adhesives showed about 50% retention in lap shear strength and a cohesive failure throughout most of the corrosion test. The dicyandiamide-cured epoxy adhesive used in this study generally showed the best lap shear strength retention to zinc-coated substrates; bonds to cold-rolled steel were severely degraded by corrosion exposure. The performance of the acrylic and urethane adhesives were intermediate to the dicyandiamide-cured epoxy and poly(vinyl chloride)-based adhesives in strength retention.  相似文献   
3.
《材料科学技术学报》2019,35(10):2345-2356
The corrosion kinetics and patina (corrosion products) layer evolution of galvanized steel submitted to wet/dry cyclic corrosion test in a simulated coastal-industrial atmosphere was investigated. The results show that zinc coating has a greater corrosion rate during the initial period and a lower corrosion rate during the subsequent period, and the patina composition and structure can greatly affect the corrosion kinetics evolution of zinc coating. Moreover, Zn5(OH)6(CO3)2 and Zn4(OH)6SO4 are identified as the main stable composition and exhibit an increasing relative amount; while Zn12(OH)15Cl3(SO4)3 cannot stably exist and diminish in the patina layer as the corrosion develops.  相似文献   
4.
Transient spreading behavior, joint properties and metallurgical compositions are investigated for different hot-dip and electro-galvanized zinc coatings. The main focus is set on the effect of coating thicknesses and droplet size. While most of the droplets are observed on surfaces at room temperature, the case of pre-heated substrates is also accounted for. Both the coating thickness and the droplet size have little effect on the resulting wetting angle compared to the effect of preheating or the absence of a coating. The transient spreading behavior significantly differs for different coating types. The coating thickness affects heat transfer into the substrate during the initial stage of wetting. The metallurgical composition shows that the coating is removed over a broad interfacial area, while it accumulates at the toe of the deposited braze metal most likely due to fluid dynamic effects.  相似文献   
5.
Galvanized substrate morphology, oxide layer chemistry, bond failure modes, failure loci, and bondline corrosion have been investigated for adhesive bonds to galvanized steel. Significant differences in surface morphology were observed between the relatively smooth surfaces of “hot-dipped” substrates and the considerably rougher texture of “electroplated” substrates. The hot-dipped substrates were also chemically heterogeneous, with significant amounts of Al, Mg, Ca, and Pb, in addition to Zn, constituting the surface layer. For electroplated substrates, on the other hand, Zn was the major constituent. It was concluded that, for a given adhesive, low strengths and poor bond durability generally correlated with the minimum surface roughness and maximum chemical heterogeneity of the hot-dipped substrates. Higher strengths, and better durability, on the other hand, were observed for electroplated substrates, which showed the greater roughness, as well as chemically the more uniform surface.

Significantly, ESCA spectroscopy of fracture surfaces of unaged samples established that failure loci for both one and two-part epoxy adhesives included the oxide layer of the substrate. This was true for both hot-dipped, as well as electroplated substrates. For aged samples, scanning electron microscopy and X-ray diffraction analysis of failure surface identified zinc-based corrosion products present in the original bond area.  相似文献   
6.
The effects of corrosive environments on adhesive bonds to electro-galvanized, zinc/aluminum alloy coated, coated electro-galvanized, and cold-rolled steels have been investigated. Bonds prepared using a rubber-modified dicyandiamide-cured epoxy adhesive, an epoxy-modified poly(vinyl chloride)-based adhesive, an acrylic-modified poly(vinyl chloride)-based adhesive a one-part urethane adhesive, and a two-component epoxy-modified acrylic adhesive were exposed under no-load conditions to constant high humidity or cyclic corrosion exposure for 50 days or 50 cycles (10 weeks) respectively.

Over the course of this study, exposure to constant high humidity had little effect on lap shear strength for any of the systems studied. Bond failures were initially cohesive, and with few exceptions remained so.

Bond strength retention under the cyclic corrosion exposure conditions employed was strongly dependent on adhesive composition and on substrate type. On galvanized substrates, lap shear strengths for the poly(vinyl chloride)-based adhesives were reduced by 90–100% during the course of the corrosion exposure, and a change in the mode of bond failure (from cohesive to interfacial) was observed. On the coated electro-galvanized steel substrate, the poly(vinyl chloride)-based adhesives showed about 50% retention in lap shear strength and a cohesive failure throughout most of the corrosion test. The dicyandiamide-cured epoxy adhesive used in this study generally showed the best lap shear strength retention to zinc-coated substrates; bonds to cold-rolled steel were severely degraded by corrosion exposure. The performance of the acrylic and urethane adhesives were intermediate to the dicyandiamide-cured epoxy and poly(vinyl chloride)-based adhesives in strength retention.  相似文献   
7.
The electrochemical behaviour of pure Zn and galvanized steel in solutions simulating the pore solution of carbonated concrete has been studied by means of potentiodynamic polarization tests and polarization resistance measurements. Pure Zn was chosen because it simulates well the behaviour of galvanized steel, yielding more reproducible results. The effect of different degrees of carbonation and the presence of different chloride contents in the simulated pore solutions was investigated. Results show that at a given pH (about 9.5) the corrosion susceptibility of Zn depends on anions concentration (carbonate and bicarbonate). The results obtained in simulated carbonated concrete pore solutions show that with low anion concentration Zn does not passivate while in presence of high levels of carbonate and bicarbonate the corrosion resistance is improved. Besides, the presence of chloride increases the corrosion susceptibility.  相似文献   
8.
镀锌钢板磷化工艺的研究   总被引:6,自引:2,他引:6  
研究出一种应用于镀锌钢板的磷化工艺,对磷化液中各组分的作用进行了分析,讨论了酸度及磷化前的表面调整对磷化膜性能的影响。  相似文献   
9.
热镀锌钢表面硅烷膜耐蚀性能的初步研究   总被引:18,自引:1,他引:18  
将热镀锌(HDG)钢板经不同的表面处理后涂覆硅烷,研究成膜后的耐蚀性能。中性盐雾腐蚀试验和5%NaCl溶液中的电化学极化曲线测试表明:涂覆硅烷膜后,能够抑制热镀锌钢板产生白锈,涂覆前的碱处理和Ce3 盐处理能进一步提高膜层耐蚀性;硅烷膜能降低腐蚀速度,尤其是在镀锌层上经Ce3 盐处理后再涂覆硅烷成膜能够明显地抑制腐蚀过程中的阴极和阳极反应,耐蚀效果最好。  相似文献   
10.
The polarization behaviour of zinc in alkaline solution has been investigated using atomic emission spectroelectrochemistry. By independently measuring the oxidation rate of zinc (electrical current) and the rate of Zn2+ dissolution (partial elemental current) it is possible to calculate the amount of insoluble zinc cations produced at any instant. Assuming the insoluble cations are present as a zinc oxide film, the growth of this film as a function of potential and time was determined. On the basis of kinetic evidence, it was found that at least three forms of zinc based oxide/hydroxide films form during polarization experiments. Type I oxide formation occurs when the metal/electrolyte interface becomes locally saturated with Zn2+ ions. Type II oxide forms on the metal surface underneath the film of Type I oxide but has little inhibiting effect on zinc dissolution. Type III oxide is produced in much smaller quantity and results in a transition to the passive state. This may be due to a potential induced transition of Type II → Type III oxide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号