首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9429篇
  免费   574篇
  国内免费   338篇
电工技术   311篇
技术理论   1篇
综合类   977篇
化学工业   1190篇
金属工艺   258篇
机械仪表   529篇
建筑科学   1716篇
矿业工程   273篇
能源动力   562篇
轻工业   1576篇
水利工程   405篇
石油天然气   425篇
武器工业   60篇
无线电   436篇
一般工业技术   626篇
冶金工业   135篇
原子能技术   76篇
自动化技术   785篇
  2024年   25篇
  2023年   142篇
  2022年   241篇
  2021年   277篇
  2020年   297篇
  2019年   244篇
  2018年   246篇
  2017年   264篇
  2016年   321篇
  2015年   333篇
  2014年   545篇
  2013年   610篇
  2012年   672篇
  2011年   710篇
  2010年   500篇
  2009年   473篇
  2008年   471篇
  2007年   557篇
  2006年   560篇
  2005年   456篇
  2004年   362篇
  2003年   336篇
  2002年   327篇
  2001年   257篇
  2000年   227篇
  1999年   177篇
  1998年   129篇
  1997年   89篇
  1996年   94篇
  1995年   91篇
  1994年   65篇
  1993年   46篇
  1992年   34篇
  1991年   44篇
  1990年   27篇
  1989年   31篇
  1988年   19篇
  1987年   11篇
  1986年   6篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1981年   1篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1975年   1篇
  1959年   1篇
  1957年   2篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Eco-friendly quantum dots (QDs) can be termed green QDs which stand as an attractive choice to modify the properties of known semiconductors in the direction of getting efficient photoelectrodes for solar-induced photoelectrochemical (PEC) splitting of water, due to their peculiar properties. Thus, it is of high significance to analyze their merit/demerit as an effective scaffold in PEC cell. QDs are known for their excellent optical properties however, the coupling of green QDs with semiconductor is not only useful in improving absorption characteristics but also promotes charge transfer. This review has undertaken the critical analysis on the worldwide research going on the green QDs modified photoelectrode with respect to their optical, electrical & photoelectrochemical properties, role, usefulness, efficiency, and finally the success in PEC system for hydrogen production. Various methods on the facile synthesis & sensitization techniques of green QDs available in the literature have also been discussed. Further, recent advances on the development of green QDs based photo-electrode, along with major challenges of using green QDs in this field have also been presented.  相似文献   
2.
Software is a central component in the modern world and vastly affects the environment’s sustainability. The demand for energy and resource requirements is rising when producing hardware and software units. Literature study reveals that many studies focused on green hardware; however, limited efforts were made in the greenness of software products. Green software products are necessary to solve the issues and problems related to the long-term use of software, especially from a sustainability perspective. Without a proper mechanism for measuring the greenness of a particular software product executed in a specific environment, the mentioned benefits will not be attained. Currently, there are not enough works to address this problem, and the green status of software products is uncertain and unsure. This paper aims to identify the green measurements based on sustainable dimensions in a software product. The second objective is to reveal the relationships between the elements and measurements through empirical study. The study is conducted in two phases. The first phase is the theoretical phase, where the main components, measurements and practices that influence the sustainability of a software product are identified. The second phase is the empirical study that involved 103 respondents in Malaysia investigating current practices of green software in the industrial environment and further identifying the main sustainability dimensions and measurements and their impact on achieving green software products. This study has revealed seven green measurements of software product: Productivity, Usability, Cost Reduction, Employee Support, Energy Efficiency, Resource Efficiency and Tool Support. The relationships are statistically significant, with a significance level of less than 0.01 (p = 0.000). Thus, the hypothesised relationships were all accepted. The contributions of this study revolve around the research perspectives of the measurements to attain a green software product.  相似文献   
3.
When planning large-scale 100% renewable energy systems (RES) for the year 2050, the system capacity is usually oversized for better supply-demand matching of electrical energy since solar and wind resources are highly intermittent. This causes excessive excess energy that is typically dissipated, curtailed, or sold directly. The public literature shows a lack of studies on the feasibility of using this excess for country-scale co-generation. This study presents the first investigation of utilizing this excess to generate green hydrogen gas. The concept is demonstrated for Jordan using three solar photovoltaic (PV), wind, and hybrid PV-wind RESs, all equipped with Lithium-Ion battery energy storage systems (ESSs), for hydrogen production using a polymer electrolyte membrane (PEM) system. The results show that the PV-based system has the highest demand-supply fraction (>99%). However, the wind-based system is more favorable economically, with installed RES, ESS, and PEM capacities of only 23.88 GW, 2542 GWh, and 20.66 GW. It also shows the highest hydrogen annual production rate (172.1 × 103 tons) and the lowest hydrogen cost (1.082 USD/kg). The three systems were a better option than selling excess energy directly, where they ensure annual incomes up to 2.68 billion USD while having payback periods of as low as 1.78 years. Furthermore, the hydrogen cost does not exceed 2.03 USD/kg, which is significantly lower than the expected cost of hydrogen (3 USD/kg) produced using energy from fossil fuel-based systems in 2050.  相似文献   
4.
Hydrogen is gaining increased attention from industries and policymakers in China. However, most of the current demonstration projects in the country have relied on conventional energy sources, including industrial byproduct hydrogen and grey hydrogen produced from fossil fuels. Moreover, strategies and policy frameworks leading to a shift to green or low-carbon hydrogen have neither been explored in-depth nor been identified clearly in the context of China. This study aims at bridging such gaps. Roadmapping techniques enhanced by the Delphi method and SWOT analysis are used to survey hydrogen energy experts from government bodies, industries, and academia to achieve basic agreement on strategically enabling large-scale green hydrogen demonstrations followed by commercialisation in China. The outcome of two rounds of surveys showed that experts' opinions converged on a strategic roadmap with three stages of development. The corresponding policies needed in each stage are evaluated and selected to form a systemic framework.  相似文献   
5.
Sleep modes are widely accepted as an effective technique for energy-efficient networking: by adequately putting to sleep and waking up network resources according to traffic demands, a proportionality between energy consumption and network utilization can be approached, with important reductions in energy consumption. Previous studies have investigated and evaluated sleep modes for wireless access networks, computing variable percentages of energy savings. In this paper we characterize the maximum energy saving that can be achieved in a cellular wireless access network under a given performance constraint. In particular, our approach allows the derivation of realistic estimates of the energy-optimal density of base stations corresponding to a given user density, under a fixed performance constraint. Our results allow different sleep mode proposals to be measured against the maximum theoretically achievable improvement. We show, through numerical evaluation, the possible energy savings in today’s networks, and we further demonstrate that even with the development of highly energy-efficient hardware, a holistic approach incorporating system level techniques is essential to achieving maximum energy efficiency.  相似文献   
6.
The primary aim of this study is to provide insights into different low-carbon hydrogen production methods. Low-carbon hydrogen includes green hydrogen (hydrogen from renewable electricity), blue hydrogen (hydrogen from fossil fuels with CO2 emissions reduced by the use of Carbon Capture Use and Storage) and aqua hydrogen (hydrogen from fossil fuels via the new technology). Green hydrogen is an expensive strategy compared to fossil-based hydrogen. Blue hydrogen has some attractive features, but the CCUS technology is high cost and blue hydrogen is not inherently carbon free. Therefore, engineering scientists have been focusing on developing other low-cost and low-carbon hydrogen technology. A new economical technology to extract hydrogen from oil sands (natural bitumen) and oil fields with very low cost and without carbon emissions has been developed and commercialized in Western Canada. Aqua hydrogen is a term we have coined for production of hydrogen from this new hydrogen production technology. Aqua is a color halfway between green and blue and thus represents a form of hydrogen production that does not emit CO2, like green hydrogen, yet is produced from fossil fuel energy, like blue hydrogen. Unlike CCUS, blue hydrogen, which is clearly compensatory with respect to carbon emissions as it captures, uses and stores produced CO2, the new production method is transformative in that it does not emit CO2 in the first place. In order to promote the development of the low-carbon hydrogen economy, the current challenges, future directions and policy recommendations of low-carbon hydrogen production methods including green hydrogen, blue hydrogen, and aqua hydrogen are investigated in the paper.  相似文献   
7.
The crystallization phenomena of spinel in CaO-MgO-Al2O3-SiO2-Fe2O3 glass have received much attention due to the particular role in preparation of glass-ceramic materials, which represent an effective option to manage hazardous waste. In this study, both preliminary spinel and secondary spinel were precipitated in the precursor glass. The formation of these spinel was meticulously assessed by a combination of X-ray diffractometry and scanning electron microscopy. The structure of the microenvironment in the precursor glass was characterized by Raman spectrums. These advanced techniques highlight the potential for one-step crystallization of the glass. The investigation, which focused on one-step crystallization, demonstrated the growth of pyroxene on spinel accompanying a migration of chromium. The results also show the microstructure of the obtained glass-ceramic was very dependent on the heat-treat temperature. This study not only unambiguously reveals the precipitation mechanisms of spinel but also provides more documentation for one-step crystallization in the glass-ceramics field.  相似文献   
8.
An intervening barrier for photocatalytic water decomposition and pollutant degradation is the frustratingly quick recombination of e - h+ pairs. Delicate design of heterojunction photocatalysts by coupling the semiconductors at nanoscale with well-matched geometrical and electronic alignments is an effective strategy to ameliorate the charge separation. Here a facile and environment-friendly l-cysteine-assisted hydrothermal process under weakly alkaline conditions is demonstrated for the first time to fabricate ZnIn2S4/In(OH)3 hollow microspheres with intimate contact, which are verified by XRD, SEM, (HR)TEM, XPS, N2 adsorption-desorption, UV–Vis DRS and photoluminescence spectra. ZnIn2S4/In(OH)3 heterostructure (L-cys/Zn2+ = 4, molar ratio) with a band-gap of 2.50 eV, demonstrates the best photocatalytic performance for water reduction and MB degradation under visible light, outperforming its counterparts (In(OH)3 and ZnIn2S4). The excellent activity of ZnIn2S4/In(OH)3 heterostructure arises from the intercrossed band-edge positions as well as the unique hollow structure with large surface area and wide pore-size distribution, which are beneficial for the efficient charge migration from bulk to surface as well as at the interface between ZnIn2S4 and In(OH)3. This work provides an efficient and eco-friendly strategy for one-pot synthesis of heterostructured composites with intimate contact for photocatalytic application.  相似文献   
9.
在分析研究目前国内外油气井完井产能计算经验公式的基础上,针对四川气田东部浅层气藏常用的几种完井方式,建立了该地区完井产能预测的数学模型。通过实例计算,表明了其数学模型的准确可行性,并为出砂井和非出砂井的完井方式提供了选择依据:对于出砂井,砾石裸眼充填完井方式是最理想的完井方式;对于非出砂井,实际裸眼完井的产能最大。得出的结论对该地区直井完井方式的选择,完井参数优化设计以及产能预测具有一定的指导作用。  相似文献   
10.
运动饮料配方设计概论   总被引:7,自引:0,他引:7  
运动中,人体生理发生一系列的变化,包括水分损失、血糖/糖原消耗、电解质损失等,导致运动中/后的疲劳和运动能力下降。以运动中人体生理特点为基础,通过讨论运动前/中/后补充水、碳水化合物及电解质的问题,论证了运动饮料配方设计的原理依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号