首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5925篇
  免费   74篇
  国内免费   296篇
电工技术   67篇
综合类   82篇
化学工业   765篇
金属工艺   2857篇
机械仪表   231篇
建筑科学   46篇
矿业工程   68篇
能源动力   553篇
轻工业   76篇
水利工程   4篇
石油天然气   26篇
武器工业   7篇
无线电   66篇
一般工业技术   1021篇
冶金工业   313篇
原子能技术   48篇
自动化技术   65篇
  2024年   5篇
  2023年   51篇
  2022年   91篇
  2021年   189篇
  2020年   124篇
  2019年   144篇
  2018年   135篇
  2017年   129篇
  2016年   81篇
  2015年   108篇
  2014年   256篇
  2013年   367篇
  2012年   320篇
  2011年   597篇
  2010年   363篇
  2009年   376篇
  2008年   322篇
  2007年   370篇
  2006年   358篇
  2005年   291篇
  2004年   218篇
  2003年   206篇
  2002年   214篇
  2001年   181篇
  2000年   128篇
  1999年   125篇
  1998年   94篇
  1997年   99篇
  1996年   98篇
  1995年   80篇
  1994年   62篇
  1993年   34篇
  1992年   24篇
  1991年   20篇
  1990年   12篇
  1989年   9篇
  1988年   8篇
  1987年   3篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有6295条查询结果,搜索用时 296 毫秒
1.
A new route of materials synthesis, namely, high-temperature, high-pressure reactive planetary ball milling (HTPRM), is presented. HTPRM allows for the mechanosynthesis of materials at fully controlled temperatures of up to 450 °C and pressures of up to 100 bar of hydrogen. As an example of this application, a successful synthesis of magnesium hydride is presented. The synthesis was performed at controlled temperatures (room temperature (RT), 100, 150, 200, 250, 300, and 325 °C) while milling in a planetary ball mill under hydrogen pressure (>50 bar). Very mild milling conditions (250 rpm) were applied for a total milling time of 2 h, and a milling vial with a relatively small diameter (φ = 53 mm, V = ~0.06 dm3) was used. The effect of different temperatures on the synthesis kinetics and outcome were examined. The particle morphology, phase composition, reaction yield, and particle size were measured and analysed by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) techniques. The obtained results showed that increasing the temperature of the process significantly improved the reaction rate, which suggested the great potential of this technique for the mechanochemical synthesis of materials.  相似文献   
2.
The site preferences of co-alloying elements (Mo–Ta, Mo–Re, Mo–Cr) in Ni3Al are studied using first-principles calculations, and the effects of these alloying elements on the elastic properties of Ni3Al are evaluated by elastic property calculations. The results show that the Mo–Ta, Mo–Re and Mo–Cr atom pairs all prefer Al–Al sites and the spatial neighbor relation of substitution sites almost has no influence on the site preference results. Furthermore, the Young's modulus of Ni3Al increases much higher by substituting Al–Al sites with co-alloying atoms, among which Mo–Re has the best strengthening effect. The enhanced chemical bondings between alloying atoms and their neighbor host atoms are considered to be the main strengthening mechanism of the alloying elements in Ni3Al.  相似文献   
3.
With superior properties of Mg such as high hydrogen storage capacity (7.6 wt% H/MgH2), low price, and low density, Mg has been widely studied as a promising candidate for solid-state hydrogen storage systems. However, a harsh activation procedure, slow hydrogenation/dehydrogenation process, and a high temperature for dehydrogenation prevent the use of Mg-based metal hydrides for practical applications. For these reasons, Mg-based alloys for hydrogen storage systems are generally alloyed with other elements to improve hydrogen sorption properties. In this article, we have added Na to cast Mg–La alloys and achieved a significant improvement in hydrogen absorption kinetics during the first activation cycle. The role of Na in Mg–La has been discussed based on the findings from microstructural observations, crystallography, and first principles calculations based on density functional theory. From our results in this study, we have found that the Na doped surface of Mg–La alloy systems have a lower adsorption energy for H2 compared to Na-free surfaces which facilitates adsorption and dissociation of hydrogen molecules leading to improvement of absorption kinetic. The effect of Na on the microstructure of these alloys, such as eutectic refinement and a density of twins is not highly correlated with absorption kinetics.  相似文献   
4.
Additive doping is one of the effective methods to overcome the shortcomings of MgH2 on the aspect of relatively high operating temperatures and slow desorption kinetics. In this paper, hollow g-C3N4 (TCN) tubes with a diameter of 2 μm are synthesized through the hydrothermal and high-temperature pyrolysis methods, and then nickel is chemically reduced onto TCN to form Ni/TCN composite at 278 K. Ni/TCN is then introduced into the MgH2/Mg system by means of hydriding combustion and ball milling. The MgH2–Ni/TCN composite starts to release hydrogen at 535 K, which is 116 K lower than the as-milled MgH2 (651 K). The MgH2–Ni/TCN composite absorbs 5.24 wt% H2 within 3500 s at 423 K, and takes up 3.56 wt% H2 within 3500 s, even at a temperature as low as 373 K. The apparent activation energy (Ea) of the MgH2 decreases from 161.1 to 82.6 kJ/mol by the addition of Ni/TCN. Moreover, the MgH2–Ni/TCN sample shows excellent cycle stability, with a dehydrogenation capacity retention rate of 98.0% after 10 cycles. The carbon material enhances sorption kinetics by dispersing and stabilizating MgH2. Otherwise, the phase transformation between Mg2NiH4 and Mg2NiH0.3 accelerates the re/dehydrogenation reaction of the composite.  相似文献   
5.
Magnesium aluminate-based materials were prepared by applying different methods: (i) mechanochemical milling of the initial mixture of magnesium and aluminium nitrate powders (in appropriate stoichiometric amounts) followed by heat treatment at temperatures of 650 °C and 850 °C and (ii) melting of the mixture of nitrate precursors at 240 °C followed by thermal treatment at 650 °C, 750 °C and 850 °C. The effect of synthesis method on the structure and morphology of the obtained solids was studied by using various techniques such as: nitrogen adsorption-desorption isotherms, powder XRD, IR spectroscopy and SEM. It was shown that the mechanochemical milling performed before calcination procedure leads to obtaining of nanocrystalline magnesium aluminate spinel phase at lower temperature of 650 °C in comparison with the method using thermal treatment only (at 750 °C). The obtained nanomaterials exhibit mesoporous structure.  相似文献   
6.
This paper presents an overview and examples of material design and development using (1) classical thermodynamics; (2) CALPHAD (calculation of phase diagrams) modeling; and (3) Integrated Computational Materials Engineering (ICME) approaches. Although the examples are given in lightweight aluminum and magnesium alloys for structural applications, the fundamental methodology and modeling principles are applicable to all materials and engineering applications. The examples in this paper have demonstrated the effectiveness and limitations of classical thermodynamics in solving specific problems (such as nucleation during solidification and solid-state precipitation in aluminum alloys). Computational thermodynamics and CALPHAD modeling, when combined with critical experimental validation, have been used to guide the selection and design of new magnesium alloys for elevated-temperature applications. The future of material design and development will be based on a holistic ICME approach. However, key challenges exist in many aspects of ICME framework, such as the lack of diffusion/mobility databases for many materials systems, limitation of current microstructural modeling capability and integration tools for simulation codes of different length scales.  相似文献   
7.
Based on the phase transformation theories, especially the T0 concept of bainite transformation, alloy optimisation of bainitic steel with carbides has been carried out aiming at the produce of plastic mould with large cross-section. The effect of manganese and silicon on proeutectoid ferrite and bainite transformation is explored by dilatometric analysis, XRD and different microscopy techniques. The results show that after the alloy optimisation, the transformation of proeutectoid ferrite is suppressed and when the cooling rate is lower than 0·1°C?s??1, the new lower bainite transformation appears by decreasing carbon capacity of austenite and promoting carbide precipitation. Industrial production proves that the optimised alloy SDP1 can meet the demand for the plastic mould with the thickness of 1050?mm.  相似文献   
8.
Magnesium (Mg)-based nanocomposites owing to their low density and biocompatibility are being targeted for transportation and biomedical sectors. In order to support a sustainable environment, the prime aim of this study was to develop non-toxic magnesium-based nanocomposites for a wide spectrum of applications. To support this objective, cerium oxide nanoparticles (0.5?vol%, 1?vol%, and 1.5?vol%) reinforced Mg composites are developed in this study using blend-press-sinter powder metallurgy technique. The microstructural studies exhibited limited amounts of porosity in Mg and Mg-CeO2 samples (< 1%). Increasing presence of CeO2 nanoparticles (up to 1.5?vol%) led to a progressive increase in microhardness, dimensional stability, damping capacity and ignition resistance of magnesium. The compressive strengths increased with the increasing addition of the nanoparticles with a significant enhancement in the fracture strain (up to ~48%). Superior energy absorption was observed for all the composite samples prior to compressive fracture. Further, enhancement in thermal, mechanical and damping characteristics of pure Mg is correlated with microstructural changes due to the presence of the CeO2 nanoparticles.  相似文献   
9.
Behavior of Magnesium‐Alloys for Automotive Applications under Mechanical and Environmental Loading: Influence of Passivating Films and Mechanisms of Local Breakdown To assure an efficient design of components under cyclic loading, all available data concerning fatigue have to be observed. Therefore the influences of manufacturing on the material condition, the mechanical loads and environmental effects have to be analysed. Magnesium‐alloys are of special interest for lightweight applications because of their excellent strength‐density ratio. The corrosion resistance of magnesium‐alloys depends on the same factors that are critical to other metals. The alloys have a good stability to atmospheric exposure and a good resistance to attack by alkali, chromic and hydrofluoric acids. However, because of the electrochemical activity of magnesium, the relative importance of some factors is greatly amplified. The nature and composition of passive films formed on magnesium‐alloys depend on the prevailing conditions, viz. alloy‐composition, passivation potential, pH, electrolyte composition and temperature. Passive films may be damaged by local breakdown. Because of this, magnesium‐alloys suffer a degradation of their properties when exposed to an aqueous environment. The main topic of the present investigations is the verification of mechanisms of the local breakdown of the protecting film. At least two mechanisms are possible for this localization: mechanical breakdown by slip steps and electrochemical breakdown (for e.g. by the effects of chloride ions). Corrosion and passivation of different high purity alloys have been studied in different solutions (neutral, alkaline with specific anions and cations) using electrochemical techniques. The diecasted alloys were tested as produced and machined. The results clarified that depending on alloy/material and surface condition/corrosion environment different mechanisms for electrochemical breakdown of the protecting films are possible. Hence fatigue life under environmental loading is influenced by surface and testing conditions.  相似文献   
10.
提高焊膏印刷质量的工艺改进   总被引:1,自引:0,他引:1  
杨晓渝 《微电子学》2003,33(5):419-421
焊膏印刷作为SMT工艺的第一步,其质量好坏对SMT工艺有着重要影响。文章通过对焊膏成分、特性的分析,讨论了印刷中各种工艺参数的正确选择;对焊膏印刷中容易出现的质量问题进行了详细分析,指出了产生问题的原因,提出了改进措施。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号