首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   70篇
综合类   1篇
化学工业   42篇
机械仪表   6篇
矿业工程   1篇
轻工业   1篇
无线电   43篇
一般工业技术   98篇
冶金工业   1篇
  2023年   12篇
  2022年   16篇
  2021年   17篇
  2020年   15篇
  2019年   15篇
  2018年   12篇
  2017年   19篇
  2016年   25篇
  2015年   15篇
  2014年   14篇
  2013年   4篇
  2012年   9篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有193条查询结果,搜索用时 31 毫秒
1.
Bcl-2 and Mcl-1, the two arms of the anti-apoptotic Bcl-2 family proteins, have been identified as key regulators of apoptosis and effective therapeutic targets of cancer. However, no small-molecular probe is capable of profiling and visualizing both Bcl-2 and Mcl-1 simultaneously in situ. Herein, we report a multifunctional molecular probe (BnN3-OPD-Alk) by a “three-in-one” molecular designing strategy, which integrated the Bcl-2/Mcl-1 binding ligand, fluorescent reporter group and photoreactive group azido into the same scaffold. BnN3-OPD-Alk exhibited sub-micromolar affinities to Bcl-2/Mcl-1 and bright green self-fluorescence. It was then successfully applied for Bcl-2/Mcl-1 labeling, capturing, enriching, and bioimaging both in vitro and in cells. This strategy could facilitate the precise early diagnosis and effective therapy of dual Bcl-2/Mcl-1-related diseases.  相似文献   
2.
We report the characterization of amphiphilic aminoglycoside conjugates containing luminophores with aggregation-induced emission properties as transfection reagents. These inherently luminescent transfection vectors are capable of binding plasmid DNA through electrostatic interactions; this binding results in an emission “on” signal due to restriction of intramolecular motion of the luminophore core. The luminescent cationic amphiphiles effectively transferred plasmid DNA into mammalian cells (HeLa, HEK 293T), as proven by expression of a red fluorescent protein marker. The morphologies of the aggregates were investigated by microscopy as well as ζ-potential and dynamic light-scattering measurements. The transfection efficiencies using luminescent cationic amphiphiles were similar to that of the gold-standard transfection reagent Lipofectamine® 2000.  相似文献   
3.
Versatile optimization of the synthesis method and composition of Yb3+ and Tm3+ co-doped CaF2 nanoparticles as well as a novel biofunctionalization method were developed and evaluated.Through multistep synthesis,the luminescence intensity of the Tm3+ activator was enhanced by more than 10-fold compared to standard one-step synthesis.The proposed methods were used to homogenously distribute the doping ions within the nanoparticle's volume and thus reduce luminescence quenching.Optimization of dopant ions concentration led to the selection of the most efficient visible and near-infrared up-converting nanoparticles,which were CaF2 doped with 10% Yb3+ 0.05% Tm3+ and 20% Yb3+ 0.5% Tm3+,respectively.To illustrate the suitability of the synthesized nanoparticles as bio-labels,a dedicated biofunctionalization method was used,and the nanoparticles were applied for labeling and imaging of Candida albicans cells.This method shows great promise because of extremely low background and high specificity because of the presence of the attached molecules.  相似文献   
4.
5.
碳量子点作为一种新型的纳米材料,具有荧光性能优异、尺寸小、毒性低等诸多优势,因而具有良好的应用前景,尤其在生物医学领域有突出的应用价值,近年来引起了科研者们的广泛关注。在介绍碳量子点光学性质的基础上,重点综述了碳量子点在生物成像、诊疗剂应用及碳量子点生物毒性等方面的最新研究进展,并探讨了碳量子点未来的发展方向和前景。  相似文献   
6.
Herein, a highly stable aggregation‐induced emission (AIE) fluorescent nanodot assembled by an amphiphilic quinoxalinone derivative‐peptide conjugate, namely Quino‐1‐Fmoc‐RACR (also termed as Q1‐PEP), which exhibits large Stokes shift and an endoplasmic reticulum (ER)‐targeting capacity for bioimaging is reported. It is found that the resulting nanodot can effectively enter the ER with high fluorescent emission. As the ER is mainly involved in the transport of synthesized proteins in vesicles to the Golgi or lysosomes, the Q1‐PEP nanodot with ER‐targeting capacity can be used to monitor vesicular transport inside the cells. Compared to conventional fluorescent dyes with small Stokes shifts, the self‐assembled fluorescent nanodot shows superior resistance to photobleaching and aggregation‐induced fluorescence quenching, and elimination of the spectra overlap with autofluorescence of biosubstrate owning to their AIE‐active and red fluorescence emission characteristics. All these optical properties make the fluorescent nanodot suitable for noninvasive and long‐term imaging both in vitro and in vivo.  相似文献   
7.
Plasmonic gold nanocrystal represents plasmonic metal nanomaterials, and has a variety of unique and beneficial properties, such as optical signal enhancement, catalytic activity, and photothermal properties tuned by local temperature, which are useful in physical, chemical, and biological applications. In addition, the inherent properties of predictable programmability, sequence specificity, and structural plasticity provide DNA nanostructures with precise controllability, spatial addressability, and targeting recognition, serving as ideal ligands to link or position building blocks during the self-assembly process. Self-assembly is a common technique for the organization of prefabricated and discrete nanoparticle blocks for the construction of extremely sophisticated nanocomposites. To this end, the integration of DNA nanotechnology with Au nanomaterials, followed by assembly of DNA-functionalized Au nanomaterials can form novel functional Au nanomaterials that are difficult to obtain through conventional methods. Here, recent progress in DNA-assembled Au nanostructures of various shapes is summarized, and their functions are discussed. The fabrication strategies that employ DNA for the self-assembly of Au nanostructures, including dimers, tetramers, satellites, nanochains, and other nanostructures with more complex geometric configurations are first described. Then, the characteristic optical properties and applications of biosensing, bioimaging, drug delivery, and therapy are discussed. Finally, the remaining challenges and prospects are elucidated.  相似文献   
8.
Optical imaging plays an important role in biomedical research being extremely useful for early detection, screening and image-guided therapy. Lanthanide-doped up-converting nanoparticles were ideally suited for bioimaging because they could be ex- cited in near infrared (NIR) and emit in NIR or visible (VIS). Here, we compared lanthanide doped up-converting NaYF4 and organic fluorophores for application in deep-tissue imaging. For that purpose - tissue phantoms mimicking the natural properties of light scat- tering by living tissues were prepared. The studies allowed to quantitatively compare optical resolution of different fluorescent com- pounds, revealing that the NIR photoexcitation was favorable over conventional UV photoexcitation.  相似文献   
9.
Multimodal imaging provides complimentary information that is advantageous in studying both cellular and molecular mechanisms in vivo, which has tremendous potential in pre‐clinical research and clinical translational imaging. It is desirable to design probes for multimodal imaging that can be administered minimally but provides multifaceted information. Herein, we demonstrate the complementary dual functional ability of a nanoconstruct for molecular imaging in both photoacoustic (PA) and surface‐enhanced Raman scattering (SERS) biosensing simultaneously in tandem. To realize this, a group of NIR active organic molecules are designed and synthesized that possess both SERS and PA activity. Nanoconstructs realized by anchoring such molecules onto gold nanoparticles are demonstrated for targeting cancer biomarkers in vivo while providing complimentary information about biodistribution and targeting efficiency. In future, such nanoconstructs could play a major role in identifying surgical margins and also for disease monitoring in translational medicine.  相似文献   
10.
Near-infrared (NIR) fluorescent probes are very significant for detecting cysteine in biological systems. Herein, we report a highly selective and sensitive NIR turn-on fluorescent probe (BDP-NIR) based on BODIPY with large Stokes shift (105 nm) for detecting Cys. We clarified the sensing mechanism based on the different thiol-induced SNAr substitution/rearrangement reaction of the probe with cysteine and homocysteine/glutathione, which leads to the corresponding amino- and thiol-BODIPY dyes with distinct photophysical properties. Moreover, a novel mechanism of fluorescence quenching was demonstrated by density functional theory calculation. The reason for the fluorescence quenching of the probe might be intersystem crossing (from singlet to triplet excited state). Moreover, BDP-NIR had a high linear dynamic range of 0–500 μM, which was promising for detecting cysteine quantificationally. Significantly, BDP-NIR was capable of sensing endogenous cysteine in living cells and in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号