首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196830篇
  免费   18402篇
  国内免费   13454篇
电工技术   33207篇
技术理论   7篇
综合类   18705篇
化学工业   11049篇
金属工艺   6903篇
机械仪表   17395篇
建筑科学   15661篇
矿业工程   7568篇
能源动力   5108篇
轻工业   5315篇
水利工程   5728篇
石油天然气   6098篇
武器工业   3097篇
无线电   20456篇
一般工业技术   9150篇
冶金工业   8259篇
原子能技术   1367篇
自动化技术   53613篇
  2024年   786篇
  2023年   2192篇
  2022年   3530篇
  2021年   4420篇
  2020年   5451篇
  2019年   4336篇
  2018年   3932篇
  2017年   5748篇
  2016年   6393篇
  2015年   7120篇
  2014年   13145篇
  2013年   11514篇
  2012年   14671篇
  2011年   15672篇
  2010年   11965篇
  2009年   12219篇
  2008年   12205篇
  2007年   14883篇
  2006年   13312篇
  2005年   11467篇
  2004年   9429篇
  2003年   8318篇
  2002年   6587篇
  2001年   5515篇
  2000年   4698篇
  1999年   3771篇
  1998年   2887篇
  1997年   2533篇
  1996年   2062篇
  1995年   1676篇
  1994年   1408篇
  1993年   1017篇
  1992年   812篇
  1991年   612篇
  1990年   456篇
  1989年   403篇
  1988年   292篇
  1987年   176篇
  1986年   127篇
  1985年   125篇
  1984年   168篇
  1983年   125篇
  1982年   116篇
  1981年   86篇
  1980年   57篇
  1979年   65篇
  1978年   52篇
  1977年   49篇
  1964年   13篇
  1959年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The article investigates the finite-time adaptive fuzzy control for a class of nonlinear systems with output constraint and input dead-zone. First, by skillfully combining the barrier Lyapunov function, backstepping design method, and finite-time control theory, a novel adaptive state-feedback tracking controller is constructed, and the output constraint of the nonlinear system is not violated. Second, the fuzzy logic system is used to approximate unknown function in the nonlinear system. Third, the finite-time command filter is introduced to avoid the problem of “complexity explosion” caused by repeated differentiations of the virtual control signal in conventional backstepping control schemes. Meanwhile, a new saturation function is added in the compensating signal for filter error to improve control accuracy. Finally, based on Lyapunov stability analysis, all the signals of the closed-loop are proved to be semi-globally uniformly ultimately bounded, and the tracking error converges to a small neighborhood region of the origin in a finite time. A simulation example is presented to demonstrate the effectiveness for the proposed control scheme.  相似文献   
2.
Tracking control of oxygen excess ratio (OER) is crucial for dynamic performance and operating efficiency of the proton exchange membrane fuel cell (PEMFC). OER tracking errors and overshoots under dynamic load limit the PEMFC output power performance, and also could lead oxygen starvation which seriously affect the life of PEMFC. To solve this problem, an adaptive sliding mode observer based near-optimal OER tracking control approach is proposed in this paper. According to real time load demand, a dynamic OER optimization strategy is designed to obtain an optimal OER. A nonlinear system model based near-optimal controller is designed to minimize the OER tracking error under variable operation condition of PEMFC. An adaptive sliding mode observer is utilized to estimate the uncertain parameters of the PEMFC air supply system and update parameters in near-optimal controller. The proposed control approach is implemented in OER tracking experiments based on air supply system of a 5 kW PEMFC test platform. The experiment results are analyzed and demonstrate the efficacy of the proposed control approach under load changes, external disturbances and parameter uncertainties of PEFMC system.  相似文献   
3.
短波发射机功率稳定一直是通信领域致力改善的重点问题,短波发射机功率不稳定会直接影响无线电通信质量,造成通信失真、表达不清晰等问题。针对上述问题,基于软件校准设计短波发射机功率控制系统。该系统借鉴MVC设计模式搭建系统数据库层、业务逻辑层、控制层以及界面显示层基础框架;将功率计与短波发射机相连,实时采集工作状态下的短波发射机功率数据,通过信号处理器实施处理后并存储,借鉴传输元件,将数据发送到控制器,通过控制器校准短波发射机功率与预期之间的偏差,以偏差量为输入,利用改进PID运算得出控制量,生成控制命令,通过输入输出信号接口板输出命令,控制驱动装置调节短波发射机运行参数,实现功率控制。结果表明:与 控制系统、自动调谐系统应用相比较,在所设计系统应用控制下,100s内短波发射机的功率变化曲线与预期曲线之间的拟合优度指数更大,更接近1,优于对比系统,说明相比于对比系统。本系统控制表现更好,更能维持短波发射机功率稳定,达到了研究目标。  相似文献   
4.
To operate a bag filter continuously, pulse-jet cleaning of dust particles from the filter medium is commonly required, and the pulse-jet pressure significantly affects the filter performance. In this study, the accumulation structure of residual dust particles inside and on the surface of a filter medium at different pulse-jet pressures was investigated by constructing a simple model, and the influence of the dust structure on the filter performance was clarified. Using a simple model, we determined the effective ratio of filtration area β, which represents the ratio of the filterable area to the total filtration area, the true resistance coefficient due to the primary dust layer ζp’ thinly deposited on the filter surface, and the true resistance coefficient inside the filter media itself ζf. The effective ratio of filtration area β decreased with operation time for all pulse-jet pressures; however, it maintained a high value when the pulse-jet pressure was high. The validity of β analyzed by the model was verified using two different methods, and the results showed good agreement, indicating that the model is effective in identifying real conditions. The true resistance coefficient due to the primary dust layer ζp’ decreased as the pulse-jet pressure increased; however, the true resistance coefficient inside the filter media itself ζf’ was the highest at 0.5 MPa. In addition, the dust collection efficiency was different at each pulse-jet pressure, which was considered to be caused by the difference in the dust particle accumulation structure.  相似文献   
5.
This paper considers the shared path following control of an unmanned ground vehicle by a single person. A passive measure of human intent is used to blend the human and machine inputs in a mixed initiative approach. The blending law is combined with saturated super-twisting sliding mode speed and heading controllers, so that exogenous disturbances can be counteracted via equivalent control. It is proven that when the proposed blending law is used, the combined control signals from both the human and automatic controller respect the actuator magnitude constraints of the machine. To demonstrate the approach, shared control experiments are performed using an unmanned ground vehicle, which follows a lawn mower pattern shaped path.  相似文献   
6.
7.
As the first review in this field, this paper presents an in-depth mathematical view of Intelligent Flight Control Systems (IFCSs), particularly those based on artificial neural networks. The rapid evolution of IFCSs in the last two decades in both the methodological and technical aspects necessitates a comprehensive view of them to better demonstrate the current stage and the crucial remaining steps towards developing a truly intelligent flight management unit. To this end, in this paper, we will provide a detailed mathematical view of Neural Network (NN)-based flight control systems and the challenging problems that still remain. The paper will cover both the model-based and model-free IFCSs. The model-based methods consist of the basic feedback error learning scheme, the pseudocontrol strategy, and the neural backstepping method. Besides, different approaches to analyze the closed-loop stability in IFCSs, their requirements, and their limitations will be discussed in detail. Various supplementary features, which can be integrated with a basic IFCS such as the fault-tolerance capability, the consideration of system constraints, and the combination of NNs with other robust and adaptive elements like disturbance observers, would be covered, as well. On the other hand, concerning model-free flight controllers, both the indirect and direct adaptive control systems including indirect adaptive control using NN-based system identification, the approximate dynamic programming using NN, and the reinforcement learning-based adaptive optimal control will be carefully addressed. Finally, by demonstrating a well-organized view of the current stage in the development of IFCSs, the challenging issues, which are critical to be addressed in the future, are thoroughly identified. As a result, this paper can be considered as a comprehensive road map for all researchers interested in the design and development of intelligent control systems, particularly in the field of aerospace applications.  相似文献   
8.
This paper proposes a method for the coordinated control of power factor by means of a multiagent approach. The proposed multiagent system consists of two types of agent: single feeder agent (F_AG) and bus agent (B_AG). In the proposed system, an F_AG plays as an important role, which decides the power factors of all distributed generators by executing the load flow calculations repeatedly. The voltage control strategies are implemented as the class definition of Java into the system. In order to verify the performance of the proposed method, it has been applied to a typical distribution model system. The simulation results show that the system is able to control very violent fluctuation of the demands and the photovoltaic (PV) generations.  相似文献   
9.
In this article, an adaptive fuzzy output feedback control method is presented for nonlinear time-delay systems with time-varying full state constraints and input saturation. To overcome the problem of time-varying constraints, the integral barrier Lyapunov functions (IBLFs) integrating with dynamic surface control (DSC) are applied for the first time to keep the state from violating constraints. The effects of unknown time delays can be removed by using designed Lyapunov-Krasovskii functions (LKFs). An auxiliary design system is introduced to solve the problem of input saturation. The unknown nonlinear functions are approximated by the fuzzy logic systems (FLS), and the unmeasured states are estimated by a designed fuzzy observer. The novel controller can guarantee that all signals remain semiglobally uniformly ultimately bounded and satisfactory tracking performance is achieved. Finally, two simulation examples illustrate the effectiveness of the presented control methods.  相似文献   
10.
Hot-dip galvanizing is a standard technology to produce coated steel strips. The primary objective of the galvanizing process is to establish a homogeneous zinc layer with a defined thickness. One condition to achieve this objective is a uniform transverse distance between the strip and the gas wiping dies, which blow off excessive liquid zinc. Therefore, a flat strip profile at the gas wiping dies is required. However, strips processed in such plants often exhibit residual curvatures which entail unknown flatness defects of the strip. Such flatness defects cause non-uniform air gaps and hence an inhomogeneous zinc coating thickness. Modern hot-dip galvanizing lines often use electromagnets to control the transverse strip profile near the gas wiping dies. Typically, the control algorithms ensure a flat strip profile at the electromagnets because the sensors for the transverse strip displacement are also located at this position and it is unfeasible to mount displacement sensors directly at the gas wiping dies. This brings along that in general a flatness defect remains at the gas wiping dies, which in turn entails a suboptimal coating.In this paper, a model-based method for a feedforward control of the strip profile at the position of the gas wiping dies is developed. This method is based on a plate model of the axially moving strip that takes into account the flatness defects in the strip. First, an estimator of the flatness defects is developed and validated for various test strips and settings of the plant. Using the validated mathematical model, a simulation study is performed to compare the state-of-the-art control approach (flat strip profile at the electromagnets) with the optimization-based feedforward controller (flat strip profile at the gas wiping dies) proposed in this paper. Moreover, the influence of the distance between the gas wiping dies and the electromagnets is investigated in detail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号