首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9551篇
  免费   974篇
  国内免费   360篇
电工技术   153篇
综合类   652篇
化学工业   3310篇
金属工艺   415篇
机械仪表   178篇
建筑科学   779篇
矿业工程   258篇
能源动力   385篇
轻工业   1470篇
水利工程   392篇
石油天然气   779篇
武器工业   39篇
无线电   268篇
一般工业技术   912篇
冶金工业   614篇
原子能技术   138篇
自动化技术   143篇
  2024年   30篇
  2023年   120篇
  2022年   300篇
  2021年   353篇
  2020年   388篇
  2019年   309篇
  2018年   258篇
  2017年   308篇
  2016年   347篇
  2015年   354篇
  2014年   494篇
  2013年   585篇
  2012年   663篇
  2011年   684篇
  2010年   481篇
  2009年   551篇
  2008年   480篇
  2007年   590篇
  2006年   511篇
  2005年   427篇
  2004年   352篇
  2003年   292篇
  2002年   255篇
  2001年   215篇
  2000年   187篇
  1999年   175篇
  1998年   158篇
  1997年   116篇
  1996年   131篇
  1995年   117篇
  1994年   91篇
  1993年   70篇
  1992年   67篇
  1991年   63篇
  1990年   60篇
  1989年   47篇
  1988年   41篇
  1987年   33篇
  1986年   36篇
  1985年   39篇
  1984年   37篇
  1983年   21篇
  1982年   20篇
  1981年   10篇
  1980年   7篇
  1978年   4篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1962年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Electrocatalytic nitrogen reduction reaction (ENRR) offers a carbon-neutral process to fix nitrogen into ammonia, but its feasibility depends on the development of highly efficient electrocatalysts. Herein, we report that Fe ion grafted on MoO3 nanorods synthesized by an impregnation technique can efficiently enhance the electron harvesting ability and the selectivity of H+ during the NRR process in neutral electrolyte. In 0.1 M Na2SO4 solution, the electrocatalyst exhibited a remarkable NRR activity with an NH3 yield of 9.66 μg h?1 mg?1cat and a Faradaic efficiency (FE) of 13.1%, far outperforming the ungrafted MnO3. Density functional theory calculations revealed that the Fe sites are major activation centers along the alternating pathway.  相似文献   
2.
Chitosan (CHT) is a non-toxic and inexpensive compound obtained by deacetylation of chitin, the main component of the exoskeleton of arthropods as well as of the cell walls of many fungi. In agriculture CHT is used to control numerous diseases on various horticultural commodities but, although different mechanisms have been proposed, the exact mode of action of CHT is still unknown. In sycamore (Acer pseudoplatanus L.) cultured cells, CHT induces a set of defense/stress responses that includes production of H2O2 and nitric oxide (NO). We investigated the possible signaling role of these reactive molecules in some CHT-induced responses by means of inhibitors of production and/or scavengers. The results show that both reactive nitrogen and oxygen species are not only a mere symptom of stress conditions but are involved in the responses induced by CHT in sycamore cells. In particular, NO appears to be involved in a cell death form induced by CHT that shows apoptotic features like DNA fragmentation, increase in caspase-3-like activity and release of cytochrome c from the mitochondrion. On the contrary, reactive oxygen species (ROS) appear involved in a cell death form induced by CHT that does not show these apoptotic features but presents increase in lipid peroxidation.  相似文献   
3.
Temperature programmed reduction (TPR) analysis was applied to investigate the chemical reduction progression behavior of molybdenum oxide (MoO3) catalyst. The composition and morphology of the reduced phases were characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). The reduction progression of MoO3 catalyst was attained with different reductant types and concentration (10% H2/N2, 10% and 20% CO/N2 (%, v/v)). Two different modes of reduction process were applied. The first approach of reduction involved non-isothermal mode reduction up to 700 °C, while the second approach of reduction involved the isothermal mode reduction for 60 min at 700 °C. Hydrogen temperature programmed reduction (H2-TPR) results showed the reduction progression of three-stage reduction of MoO3 (Mo6+ → Mo5+ → Mo4+ → Mo0) with Mo5+ and Mo4+. XRD analysis confirmed the formation of Mo4O11 phase as an intermediate phase followed by MoO2 phase. After 60 min of isothermal reduction, peaks of metallic molybdenum (Mo) appeared. Whereas, FESEM analysis showed porous crater-like structure on the surface cracks of MoO2 layer which led to the growth of Mo phase. Meanwhile, the reduction of MoO3 catalyst in 10% carbon monoxide (CO) showed the formation of unstable intermediate phase of Mo9O26 at the early stage of reduction. Furthermore, by increasing 20% CO led to the carburization of MoO2 phase, resulted in the formation of Mo2C rather than the formation of metallic Mo, as confirmed by XPS analysis. Therefore, the presented study shows that hydrogen gave better reducibility due to smaller molecular size, which contributed to high diffusion rate and achieved deeper penetration into the MoO3 catalyst compared to carbon monoxide reductant. Hence, the reduction of MoO3 in carbon monoxide atmosphere promoted the formation of Mo2C which was in agreement with the thermodynamic assessment.  相似文献   
4.
Fluorescent nanodiamonds (fNDs) containing nitrogen vacancy (NV) centers are promising candidates for quantum sensing in biological environments. This work describes the fabrication and implementation of electrospun poly lactic‐co‐glycolic acid (PLGA) nanofibers embedded with fNDs for optical quantum sensing in an environment, which recapitulates the nanoscale architecture and topography of the cell niche. A protocol that produces uniformly dispersed fNDs within electrospun nanofibers is demonstrated and the resulting fibers are characterized using fluorescent microscopy and scanning electron microscopy (SEM). Optically detected magnetic resonance (ODMR) and longitudinal spin relaxometry results for fNDs and embedded fNDs are compared. A new approach for fast detection of time varying magnetic fields external to the fND embedded nanofibers is demonstrated. ODMR spectra are successfully acquired from a culture of live differentiated neural stem cells functioning as a connected neural network grown on fND embedded nanofibers. This work advances the current state of the art in quantum sensing by providing a versatile sensing platform that can be tailored to produce physiological‐like cell niches to replicate biologically relevant growth environments and fast measurement protocols for the detection of co‐ordinated endogenous signals from clinically relevant populations of electrically active neuronal circuits.  相似文献   
5.
Artificial nitrogen fixation is emerging as a promising approach for synthesis of ammonia at mild conditions. Inspired by biological nitrogen fixation based on bacteria containing iron, zinc doped Fe2O3 nanoparticles are proposed as an efficient and earth abundant electrocatalyst for converting N2 to NH3. In neutral media, it achieves a maximum Faradaic efficiency (FE) of 10.4% and a large NH3 yield rate of 15.1 μg h?1 mg?1cat. at ?0.5 V vs. reversible hydrogen electrode. This catalyst also exhibits excellent selectivity and stability. Theoretical calculations suggest the reaction follows the associative enzymatic mechanism and it has a barrier of as low as 0.68 eV.  相似文献   
6.
含氮化合物对NiW体系催化剂芳烃加氢性能的影响   总被引:2,自引:0,他引:2  
以γ-Al2O3、B改性的γ-Al2O3、F改性的γ-Al2O3、SiO2-Al2O3为载体制备Ni、W含量相同的四种催化剂,通过程序升温还原表征考察活性金属与不同载体的相互作用。利用氮含量不同、四氢萘含量相同的四种原料考察含氮化合物对同种NiW体系催化剂四氢萘加氢的影响以及对活性金属与载体相互作用不同的催化剂四氢萘加氢的影响。结果表明,以γ-Al2O3或SiO2-Al2O3载体制备的催化剂的金属组分与载体相互作用较强,B或F改性的γ-Al2O3能显著削弱活性金属与载体的相互作用;含氮化合物对四氢萘加氢具有强烈的抑制作用,使四氢萘加氢反应的表观活化能增加;在实验研究的四种催化剂中,金属组分与载体相互作用较弱的催化剂受含氮化合物的抑制较强。  相似文献   
7.
分析了原机型的性能特点和不足之处,介绍了改进方案。  相似文献   
8.
文中介绍一种一氧化碳检测报警器,利用恒电位电解法原理制成的传感器,并配以最新电子元器件组成检测仪。用于对矿井、化工、煤炭、电力、冶金、环保等有关部门的一氧化碳检测。  相似文献   
9.
Carbon supported copper-chromium catalysts are shown to be very active for both the reduction of nitric oxide with carbon monoxide and the oxidation of carbon monoxide with oxygen. Mixed copper-chromium oxide active phases have good activity in the simultaneous removal of nitric oxide and carbon monoxide from exhaust gases. The influence of several catalyst variables has been investigated. The activity per volume of catalyst increases with increasing loading, while the intrinsic activity shows a maximum around C/M=100−50. An optimum catalyst for nitric oxide reduction and carbon monoxide oxidation has a copper/chromium ratio of 2/1. The apparent activation energy for the carbon monoxide oxidation over carbon supported copper-chromium catalysts is 77 kJ/mol, suggesting that the Cu---O bond rupture is the rate-limiting process. The reduction of nitric oxide takes place at higher temperatures. Since all catalysts have a low selectivity for molecular nitrogen formation at lower temperatures, the dissociation of nitric oxide is probably rate determining, resulting in a slightly reduced catalyst system. In an excess of carbon monoxide the reaction is first-order in nitric oxide and zero-order in carbon monoxide. Moisture inhibits the reaction by reversible competitive adsorption, whereas carbon dioxide does not. Oxygen completely inhibits the reduction of nitric oxide due to the more rapid reoxidation of the catalytic sites compared to nitric oxide. Therefore, the reduction of nitric oxide takes place only when all oxygen has been converted and, hence, is shifted to higher temperatures. As a possible consequence, the production of nitrous oxide is reduced. Nitric oxide and molecular oxygen react preferentially with carbon monoxide, so, in an excess of oxidizing component, gasification of the carbon support occurs at higher temperatures after carbon monoxide has been completely consumed.  相似文献   
10.
GENIUS-TF (Nucl. Instr. and Meth. A 511 (2003) 341; Nucl. Instr. and Meth. A 481 (2002) 149.) is a test-facility for the GENIUS project (GENIUS-Proposal, 20 November 1997; Z. Phys. A 359 (1997) 351; CERN Courier, November 1997, 16; J. Phys. G 24 (1998) 483; Z. Phys. A 359 (1997) 361; in: H.V. Klapdor-Kleingrothaus, H. Pas. (Eds.), First International Conference on Particle Physics Beyond the Standard Model, Castle Ringberg, Germany, 8–14 June 1997, IOP Bristol (1998) 485 and in Int. J. Mod. Phys. A 13 (1998) 3953; in: H.V. Klapdor-Kleingrothaus, I.V. Krivosheina (Eds.), Proceedings of the Second International Conference on Particle Physics Beyond the Standard Model BEYOND’ 99, Castle Ringberg, Germany 6–12 June 1999, IOP Bristol (2000) 915), a proposed large scale underground observatory for rare events which is based on operation of naked germanium detectors in liquid nitrogen for an extreme background reduction. Operation of naked Ge crystals in liquid nitrogen has been applied routinely already for more than 20 years by the CANBERRA Company for technical functions tests (CANBERRA Company, private communication, 5 March 2004.), but it never had found entrance into basic research. Only in 1997 first tests of application of this method for nuclear spectroscopy have been performed, successfully, in Heidelberg (Klapdor-Kleingrothaus et al., 1997, 1998; J. Hellmig and H.V. Klapdor-Kleingrothaus, 1997).

On May 5, 2003 the first four naked high-purity germanium detectors (total mass 10.52 kg) were installed in liquid nitrogen in the GENIUS Test Facility at the Gran Sasso underground laboratory. Since then the experiment has been running continuously, testing for the first time the novel technique in an underground laboratory and for a long-lasting period.

In this work, we present the first analysis of the GENIUS-TF background after the completion of the external shielding, which took place in December 2003. We focus especially on the background coming from 222Rn daughters. This is found to be at present by a factor of 200 higher than expected from simulation. It is still compatible with the scientific goal of GENIUS-TF, namely to search for cold dark matter by the modulation signal, but on the present level would cause serious problems for a full GENIUS—like experiment using liquid nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号