首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145491篇
  免费   17945篇
  国内免费   10542篇
电工技术   11655篇
技术理论   2篇
综合类   14111篇
化学工业   18850篇
金属工艺   8972篇
机械仪表   13890篇
建筑科学   10614篇
矿业工程   4881篇
能源动力   5788篇
轻工业   11955篇
水利工程   4480篇
石油天然气   6254篇
武器工业   1848篇
无线电   11582篇
一般工业技术   16806篇
冶金工业   5403篇
原子能技术   1610篇
自动化技术   25277篇
  2024年   996篇
  2023年   2936篇
  2022年   5146篇
  2021年   5675篇
  2020年   6160篇
  2019年   5379篇
  2018年   5051篇
  2017年   6201篇
  2016年   6603篇
  2015年   7087篇
  2014年   9726篇
  2013年   10178篇
  2012年   11327篇
  2011年   11805篇
  2010年   8239篇
  2009年   8587篇
  2008年   7706篇
  2007年   9136篇
  2006年   8023篇
  2005年   6494篇
  2004年   5285篇
  2003年   4397篇
  2002年   3694篇
  2001年   3075篇
  2000年   2667篇
  1999年   2070篇
  1998年   1772篇
  1997年   1520篇
  1996年   1277篇
  1995年   1052篇
  1994年   900篇
  1993年   726篇
  1992年   605篇
  1991年   440篇
  1990年   419篇
  1989年   309篇
  1988年   255篇
  1987年   128篇
  1986年   139篇
  1985年   115篇
  1984年   104篇
  1983年   78篇
  1982年   85篇
  1981年   31篇
  1980年   58篇
  1979年   51篇
  1964年   23篇
  1963年   17篇
  1959年   22篇
  1951年   19篇
排序方式: 共有10000条查询结果,搜索用时 500 毫秒
1.
We report the study of conductive polyaniline (PANI) chain embedded Ti-MOF functionalized with CoS as a cocatalyst for hydrogen evolution reaction (HER) application. The post synthetically modified hybrid photocatalyst PANI/Ti-MOF/CoS greatly influences the redox and e? ? h+ separation process and exhibits an impressive rate of HER (~1322 μmol h?1g?1), suppressing the pristine Ti-MOF (~62 μmol h?1g?1) with apparent quantum yield (AQY) of ~3.2 and transient current response of ~46.4 μA cm?2. In this system, Ti-MOF provides the circulation of Ti3+ and Ti4+ to the reaction of photocatalytic H2 generation, where the additional PANI and CoS amended the performance of H2 production through electron enrichment and thereby improving the stability and integrity of Ti-MOF. The Electrochemical studies demonstrated increased photocurrent by interweaving Ti-MOF crystal with PANI through cation-π interaction thereby enhancing interface connection and then promoting electron transfers. The charge dynamics revealed the initial charge transfer from photoexcited PANI to encapsulated MOF framework to boost the photocatalytic performance of the system. Further, the electron movement at the Ti-MOF/CoS interface is investigated through work function and electrochemical potential of electrons (Fermi level). DFT results demonstrate the importance of CoS in improving the photocatalytic performance of hybrid Ti-MOF catalyst, which leads to superior catalytic behaviour. These results establish that the encapsulation of catalytic active sites inside MOFs with desirable energy band gaps would be an ideal choice for the production of solar fuels.  相似文献   
2.
The continuous catalytic regenerative (CCR) reforming process is one of the most significant sources of hydrogen production in the petroleum refining process. However, the fluctuations in feedstock composition and flow rate could significantly affect both product distribution and energy consumption. In this study, a robust deviation criterion based multi-objective optimization approach is proposed to perform the optimal operation of CCR reformer under feedstock uncertainty, with simultaneous maximization of product yields and minimization of energy consumption. Minimax approach is adopted to handle these uncertain objectives, and the Latin hypercube sampling method is then used to calculate these robust deviation criteria. Multi-objective surrogate-based optimization methods are next introduced to effectively solve the robust operational problem with high computational cost. The level diagram method is finally utilized to assist in multi-criteria decision-making. Two robust operational optimization problems with different objectives are solved to demonstrate the effectiveness of the proposed method for robust optimal operation of the CCR reforming process under feedstock uncertainty.  相似文献   
3.
A key element in solving real-life data science problems is selecting the types of models to use. Tree ensemble models (such as XGBoost) are usually recommended for classification and regression problems with tabular data. However, several deep learning models for tabular data have recently been proposed, claiming to outperform XGBoost for some use cases. This paper explores whether these deep models should be a recommended option for tabular data by rigorously comparing the new deep models to XGBoost on various datasets. In addition to systematically comparing their performance, we consider the tuning and computation they require. Our study shows that XGBoost outperforms these deep models across the datasets, including the datasets used in the papers that proposed the deep models. We also demonstrate that XGBoost requires much less tuning. On the positive side, we show that an ensemble of deep models and XGBoost performs better on these datasets than XGBoost alone.  相似文献   
4.
A technology for cyclic generation of hydrogen and oxygen using electrodes made of variable valency material that does not need the use of separating ion-exchange membranes is presented. The technological solution enables to fabricate electrolyzers for uninterrupted producing high-pressure hydrogen with reduced energy intensity of the production. The total work for compressing 1 m3 of hydrogen and 0.5 m3 of oxygen has been estimated. Results of investigation of influence of discrete supply of DC current to the electrolysis cell, in order to improve the processes of gas evolution and to simplify the power systems of the electrolysis plant, have been considered. There is also considered an electrolysis installation equipped with a thermosorption compressor in which LaNi5 is used as a hydride-forming compound. The comparative characteristics of the developed electrolyzer and the currently used hydrogen generators are given.  相似文献   
5.
The spongy nickel oxide (SNO) was synthesized the solution combustion method. The SNO was selected as a promoter to boost the catalytic activity of nanoraspberry-like palladium (NRPd) toward electrooxidation of five light fuels (LFs): methanol, ethanol, formaldehyde, formic acid, and ethylene glycol. The X-ray powder diffraction, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy, and field emission scanning electron microscope techniques were used for the materials characterization. In comparison with nonpromoted Pd, the NRPd-SNO electrocatalyst shown an excellent efficiency in parameters like the electrochemical active surface area and anti-CO poisoning behavior. The turnover data and the parameters, including reaction order, activation energy, and the coefficients of electron transfer and diffusion, were evaluated for the each process of LFs electrooxidation. The outcome for NRPd-SNO activity toward LFs electrooxidation was compared to some reported electrodes. The SNO increases the removal of intermediates created in the oxidation of LFs that can poison the surface of palladium catalyst. This is due to the presence of the lattice oxygens in SNO structure and Ni switching between its high and low valances. The compatibility of the adsorption process of LFs on the surface of the NRPd-SNO catalyst with different isotherms was determined by studying the Tafel polarization and calculating the surface coverage.  相似文献   
6.
7.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
8.
9.
To investigate the effect of cooking temperature (55, 65, 75, 85 and 95 °C) on texture and flavour binding of braised sauce porcine skin (BSPS), sensory acceptance, microstructure and flavour-binding capacity were investigated during the processing of BSPS. Samples cooked at 85 and 95 °C showed better texture and aroma scores. Hardness and chewiness of BSPS were obviously improved at 85 and 95 °C than control group. Collagen structure was significantly destroyed over 85 °C. The porcine skin collagen heated at 85 and 95 °C showed relatively higher flavour-binding capacity than other samples. The improvement of texture of BSPS was mainly attributed to the degradation of collagen. Higher aroma scores of BSPS were related to intense binding abilities with aroma compounds at 85 and 95 °C. Cooking at 85 or 95 °C could be an optimal cooking temperature for BSPS.  相似文献   
10.
Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1′s function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1′s functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1′s NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号