首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7546篇
  免费   1486篇
  国内免费   1612篇
电工技术   1877篇
综合类   976篇
化学工业   235篇
金属工艺   101篇
机械仪表   672篇
建筑科学   45篇
矿业工程   52篇
能源动力   121篇
轻工业   34篇
水利工程   22篇
石油天然气   27篇
武器工业   187篇
无线电   548篇
一般工业技术   537篇
冶金工业   61篇
原子能技术   7篇
自动化技术   5142篇
  2024年   97篇
  2023年   267篇
  2022年   265篇
  2021年   355篇
  2020年   448篇
  2019年   534篇
  2018年   370篇
  2017年   447篇
  2016年   507篇
  2015年   439篇
  2014年   535篇
  2013年   773篇
  2012年   471篇
  2011年   542篇
  2010年   390篇
  2009年   442篇
  2008年   431篇
  2007年   479篇
  2006年   400篇
  2005年   347篇
  2004年   308篇
  2003年   254篇
  2002年   206篇
  2001年   229篇
  2000年   190篇
  1999年   163篇
  1998年   130篇
  1997年   136篇
  1996年   112篇
  1995年   87篇
  1994年   61篇
  1993年   50篇
  1992年   54篇
  1991年   46篇
  1990年   25篇
  1989年   12篇
  1988年   10篇
  1987年   4篇
  1986年   5篇
  1985年   2篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1964年   1篇
  1962年   1篇
  1954年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The continuous catalytic regenerative (CCR) reforming process is one of the most significant sources of hydrogen production in the petroleum refining process. However, the fluctuations in feedstock composition and flow rate could significantly affect both product distribution and energy consumption. In this study, a robust deviation criterion based multi-objective optimization approach is proposed to perform the optimal operation of CCR reformer under feedstock uncertainty, with simultaneous maximization of product yields and minimization of energy consumption. Minimax approach is adopted to handle these uncertain objectives, and the Latin hypercube sampling method is then used to calculate these robust deviation criteria. Multi-objective surrogate-based optimization methods are next introduced to effectively solve the robust operational problem with high computational cost. The level diagram method is finally utilized to assist in multi-criteria decision-making. Two robust operational optimization problems with different objectives are solved to demonstrate the effectiveness of the proposed method for robust optimal operation of the CCR reforming process under feedstock uncertainty.  相似文献   
2.
Tracking control of oxygen excess ratio (OER) is crucial for dynamic performance and operating efficiency of the proton exchange membrane fuel cell (PEMFC). OER tracking errors and overshoots under dynamic load limit the PEMFC output power performance, and also could lead oxygen starvation which seriously affect the life of PEMFC. To solve this problem, an adaptive sliding mode observer based near-optimal OER tracking control approach is proposed in this paper. According to real time load demand, a dynamic OER optimization strategy is designed to obtain an optimal OER. A nonlinear system model based near-optimal controller is designed to minimize the OER tracking error under variable operation condition of PEMFC. An adaptive sliding mode observer is utilized to estimate the uncertain parameters of the PEMFC air supply system and update parameters in near-optimal controller. The proposed control approach is implemented in OER tracking experiments based on air supply system of a 5 kW PEMFC test platform. The experiment results are analyzed and demonstrate the efficacy of the proposed control approach under load changes, external disturbances and parameter uncertainties of PEFMC system.  相似文献   
3.
A method is proposed to generate categorical colour observer functions (individual colour matching functions) for any field size based on the CIE 2006 system of physiological observer functions. The method combines proposed categorical observer techniques of Sarkar et al with a physiologically-based individual observer model of Asano et al and a clustering technique to produce the optimal set of categorical observers. The number of required categorical observers varies depending on an application with as many as 50 required to predict individual observers' matches when a laser projector is viewed. However, 10 categorical observers are sufficient to represent colour-normal populations for personalized colour imaging. The proposed and recommended categorical observers represent a robust and inclusive technique to examine and quantify observer metamerism in any application of colorimetry.  相似文献   
4.
The proliferating need for sustainability intervention in food grain transportation planning is anchoring the attention of researchers in the interests of stakeholders and environment at large. Uncertainty associated with food grain supply further intensifies the problem steering the need for designing robust, cost-efficient and sustainable models. In line with this, this paper aims to develop a robust and sustainable intermodal transportation model to facilitate single type of food grain commodity shipments while considering procurement uncertainty, greenhouse gas emissions, and intentional hub disruption. The problem is designed as a mixed integer non-linear robust optimisation model on a hub and spoke network for evaluating near optimal shipment quantity, route selection and hub location decisions. The robust optimisation approach considers minimisation of total relative regret associated with total cost subject to several real-time constraints. A version of Particle Swarm Optimisation with Differential Evolution is proposed to tackle the resulting NP-hard problem. The model is tested with two other state-of the art meta-heuristics for small, medium, and large datasets subject to different procurement scenarios inspired from real time food grain operations in Indian context. Finally, the solution is evaluated with respect to total cost, model and solution robustness for all instances.  相似文献   
5.
6.
ABSTRACT

This paper deals with asymptotic stabilisation of a class of nonlinear input-delayed systems via dynamic output feedback in the presence of disturbances. The proposed strategy has the structure of an observer-based control law, in which the observer estimates and predicts both the plant state and the external disturbance. A nominal delay value is assumed to be known and stability conditions in terms of linear matrix inequalities are derived for fast-varying delay uncertainties. Asymptotic stability is achieved if the disturbance or the time delay is constant. The controller design problem is also addressed and a numerical example with an unstable system is provided to illustrate the usefulness of the proposed strategy.  相似文献   
7.
This paper presents robust and adaptive boundary control designs to stabilize the two‐dimensional vibration of hybrid shaft model. The hybrid shaft is mathematically represented by a set of partial differential equations, governing the shaft vibrations, coupled to ordinary differential equations, describing rigid body spinning and dynamic boundary conditions. The control objective is to stabilize the transverse vibrations of the perturbed shaft while regulating the spinning rate. To achieve this, the paper first establishes robust boundary control laws that fulfil the control objective in the presence of modeling uncertainties and external disturbances operating over the shaft domain and boundary. Lyapunov‐based analyses show that the proposed robust control exponentially stabilizes the shaft with vanishing distributive perturbations, while assuring ultimately bounded vibrations in the case of nonvanishing perturbations. Then, adaptive control philosophy is utilized to achieve redesigned robust controllers that only use online adaptation of control gains without acquiring the knowledge of bounds on perturbations, as well as dynamic parameters. An advantage of this design is avoiding an overconservative robust control law, which may induce poor stability and chattering in tackling system perturbations with unknown upper bounds. Simulations through finite element method illustrate the results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
8.
A method for estimating the sway angle using an observer has already been proposed. The state observer estimates the sway angle accurately and must use the detected sway angle value. However, the estimated sway angle has an error owing to rope length error, friction force, and wind. Moreover, the container mass cannot be determined, and therefore the observer parameter is not suitable. We already proposed robust antisway control for overcoming rope length error without adding a new sensor. Further, we designed a friction disturbance observer to cancel out the influence of the friction force. In this paper, we first propose a container mass estimation method when a crane system performs rolling up control. The observer parameter can be selected using the estimated mass value. Second, in crane parallel shift control, we propose a robust antisway control even when there is a wind disturbance. We design a wind disturbance observer and propose a wind disturbance estimator to separate the friction observer output from the wind disturbance observer output. We confirm through experiments that the proposed method can reduce vibration.  相似文献   
9.
This article presents an adaptive neural compensation scheme for a class of large-scale time delay nonlinear systems in the presence of unknown dead zone, external disturbances, and actuator faults. In this article, the quadratic Lyapunov–Krasovskii functionals are introduced to tackle the system delays. The unknown functions of the system are estimated by using radial basis function neural networks. Furthermore, a disturbance observer is developed to approximate the external disturbances. The proposed adaptive neural compensation control method is constructed by utilizing a backstepping technique. The boundedness of all the closed-loop signals is guaranteed via Lyapunov analysis and the tracking errors are proved to converge to a small neighborhood of the origin. Simulation results are provided to illustrate the effectiveness of the proposed control approach.  相似文献   
10.
In this paper, permanent magnet synchronous motors (PMSMs) are investigated. According to the feature of PMSMs, a novel state equation of PMSMs is obtained by choosing suitable state variables. Based on the state equation, robust controllers are designed via interval matrix and PI control idea. In terms of bilinear matrix inequations, sufficient conditions for the existence of the robust controller are derived. In order to reduce the conservation and the dependence on parameter, the control inputs of PMSMs are divided into two parts, a feedforward control input and a feedback control input, and relevant sufficient conditions for the existence of the controller are obtained. Because of the suitable choice of state variables, the proposed control strategies can cope with the load uncertainty and have robustness for disturbance. Finally, simulations are carried out via Matlab/Simulink soft to verify the effectiveness of the proposed control strategies. The performance of the proposed control strategies are demonstrated by the simulation results.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号