首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9776篇
  免费   1115篇
  国内免费   272篇
电工技术   314篇
综合类   670篇
化学工业   2372篇
金属工艺   537篇
机械仪表   181篇
建筑科学   989篇
矿业工程   794篇
能源动力   408篇
轻工业   51篇
水利工程   136篇
石油天然气   273篇
武器工业   8篇
无线电   128篇
一般工业技术   579篇
冶金工业   3630篇
原子能技术   23篇
自动化技术   70篇
  2024年   44篇
  2023年   134篇
  2022年   351篇
  2021年   331篇
  2020年   359篇
  2019年   221篇
  2018年   221篇
  2017年   365篇
  2016年   433篇
  2015年   407篇
  2014年   736篇
  2013年   524篇
  2012年   767篇
  2011年   750篇
  2010年   578篇
  2009年   573篇
  2008年   394篇
  2007年   593篇
  2006年   555篇
  2005年   471篇
  2004年   394篇
  2003年   310篇
  2002年   314篇
  2001年   290篇
  2000年   232篇
  1999年   190篇
  1998年   146篇
  1997年   120篇
  1996年   82篇
  1995年   77篇
  1994年   57篇
  1993年   38篇
  1992年   31篇
  1991年   15篇
  1990年   24篇
  1989年   15篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The current trends in energy were described, the main of which is the use of alternative energy sources, especially hydrogen. The most common methods of hydrogen accumulation were proposed: accumulation of compressed gaseous hydrogen in high-pressure tanks; accumulation of liquid hydrogen in cryogenic tanks; storing hydrogen in a chemically bound state; accumulation of gaseous hydrogen in carriers with a high specific surface area. Based on the combination of advantages and disadvantages, the most promising methods of accumulation were selected: storage of liquid hydrogen and storage of hydrogen in carriers with a high specific surface area. The main requirement for materials for hydrogen storage by these methods was revealed – a high specific surface area. Prospects for the development of waste-free low-emission technologies due to the recycling of secondary raw materials and the development of low-temperature technologies for the synthesis of functional and structural materials were substantiated. The applicability of large-scale ash and slag waste from coal-fired thermal power plants as a raw material for obtaining materials by low-temperature technologies was shown. The traditional ways of using ash and slag waste as a raw material, active additive and filler in the production of cements were described. Modern technologies for the production of innovative materials with a unique set of properties were presented, namely carbon nanotubes, silica aerogel and geopolymer materials. The prospect of using geopolymer matrices as a precursor for the synthesis of a number of materials was described; the most promising type of materials was selected – geopolymer foams, which are mainly used as sorbents for purifying liquids and gases or accumulating target products, as well as heat-insulating materials. The possibility of obtaining products of any shape and size on the basis of geopolymer matrices without high-temperature processing was shown. The special efficiency of the development of the technology of porous granules and powders obtained from a geopolymer precursor using various methods was substantiated. The obtained granules can be used in the following hydrogen storage technologies: direct accumulation of hydrogen in porous granules; creation of insulating layers for liquid hydrogen storage units.  相似文献   
2.
3.
姜学锋  彭飞  张艳龙  薛文辉 《钢铁》2020,55(9):43-48
 为了进一步降低夹杂物缺陷并提高产品质量,基于碳脱氧进行了钢包顶渣改质的研究。冷轧产品的生产工艺为铁水预处理→转炉→RH精炼→连铸,为减少钢中夹杂物质量分数,需要进行钢包顶渣改质,同时降低钢包顶渣TFe质量分数。采用粒碳部分替代铝渣球的方法进行基于碳脱氧工艺的钢包顶渣改质,试验结果表明,顶渣改质效果良好,在顶渣TFe质量分数、中间包钢水游离氧明显降低的同时铸坯中Al2O3夹杂物得到优化;“30 kg粒渣+铝渣球”工艺降低生产成本5.16元/t(钢)。  相似文献   
4.
5.
The effect of Li2O on the crystallization properties of CaO-Al2O3-SiO2-Li2O-Ce2O3 slags was investigated. With increasing the Li2O content, LiAlO2 and CaCeAlO4 were the main crystalline phases. LiAlO2 formed for the charge compensating of Li+ ions to [AlO45?]-tetrahedrons, and CaCeAlO4 formed as a result of the charge balance of Ce3+ ions, Ca2+ ions, and [AlO69?]-octahedrons. Increasing the content of Li2O to 10%, the crystallization temperature was the highest, and the incubation time was the shortest. The crystallization ability was strong due to the three factors of strengthening the interaction between ions and ion groups, decreasing the polymerization degree, and increasing the melting temperature. Further increasing the content of Li2O, the crystallization performance was obviously suppressed, because the melting temperature and the force between the cations and the anion groups decreased.  相似文献   
6.
《Ceramics International》2022,48(18):26233-26247
A new type of 3D-printable ‘one-part’ geopolymer was synthesized with fly ash (FA), granulated blast furnace slag (GBFS), steel slag (SS) and flue gas desulfurization gypsum (FGD). The effects of SS content (0–40%) on the rheological properties, 3D-printability, mechanical anisotropy and reaction kinetics of geopolymer were investigated. The yield stress and plastic viscosity monotonically decreased with the increasing SS content. Contrarily, the geopolymer with 10% of SS presented better extrudability, buildability and mechanical strength than those with 0, 20%, 30% and 40% of SS. This was mainly attributed to the conflicting influence of SS on geopolymerization, of which the OH? produced by hydration of SS raised the alkalinity of the reaction system and accelerated the dissolution of SiO44? and AlO45?, while the low reactivity prohibited the following polymerization process. Furthermore, the 3D-printed geopolymer presented more compact microstructure and less mechanical anisotropy thanks to the crosslinking of morphologically complementary products, including N(C)-A-S-H, C–S–H, AFt and CH, formed via synergistic reaction of FA-GBFS-SS-FGD system.  相似文献   
7.
8.
《Ceramics International》2022,48(8):10506-10515
The search for materials and methods capable of reducing human impacts on the environment is of utmost importance nowadays. This study's primary purpose was to analyze the technical feasibility of ceramic composites production utilizing Fundão Dam's Iron Ore Tailings (IOT), Blast Furnace Slag (BFS) from charcoal, and Foundry Sand (FS) as partial substitutes for the traditional raw materials – sand and clay – for application in building industry materials. The composites were molded in rectangular specimens and fired at temperatures of 900, 950, 1000, 1050, and 1200 °C. The developed materials were analyzed and characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Thermogravimetry (TGA), and Differential Thermal Analysis (DTA). The obtained materials had flexural strength modulus of up to 12.19 MPa, water absorption ranging from 2 to 22%, linear shrinkage ranging from 0.02 to 6.50%, and apparent density ranging from 2.03 to 1.63 g/cm3. The study of the internal structure formation process revealed the formation of amorphous structures in the composites. The results demonstrated that these waste materials may be jointly used in construction materials, contributing to the reduction of natural resource extraction, besides enabling their correct disposal, minimizing environmental impacts, and improving the life quality of the surrounding communities.  相似文献   
9.
Al–Cr slag is the solid waste generated by the smelting of Cr metal. It presents a range of environmental hazards. This study addressed the corrosion resistance of Al–Cr slag containing chromium–corundum refractories to slags with different basicity. Herein, we provide suggestions for the use of Cr–corundum of different basicity in kilns. Al–Cr slag, brown fused Al2O3, and chrome green were used as the raw materials, with pure calcium aluminate cement being used as a binder. The brick samples, prepared using different blends of chrome green and corundum, were fired at 1600?°C, and subsequently subjected to a slag corrosion test. After corrosion by slag of different basicity, the phase composition and microstructure of the sample were analyzed by X-ray diffraction, energy dispersive spectrometer and scanning electron microscopy. There were two major findings. First, Cr–corundum brick made from Al–Cr slag has a better slag corrosion resistance than that made from Cr2O3 and brown fused Al2O3. Second, Cr–corundum brick made from Al–Cr slag has superior corrosion resistance to slag with a CaO:SiO2 ratio of 2:1.  相似文献   
10.
本文利用热力学第二定律(Yong) 的(exergy)分析法,对二氧化碳跨临界制冷循环系统进行了仿真和分析,分析显示:炯效率随着放热压力的变化而变化,其最大值出现在最优放热压力处,同时,本文还就气体冷却器口温度、蒸发温度及蒸汽过热度对系统Yong效率的影响进行了仿真和分析。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号