首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17138篇
  免费   2083篇
  国内免费   1413篇
电工技术   2189篇
综合类   2318篇
化学工业   1602篇
金属工艺   761篇
机械仪表   1853篇
建筑科学   2091篇
矿业工程   526篇
能源动力   704篇
轻工业   546篇
水利工程   657篇
石油天然气   595篇
武器工业   259篇
无线电   1304篇
一般工业技术   2065篇
冶金工业   369篇
原子能技术   53篇
自动化技术   2742篇
  2024年   68篇
  2023年   197篇
  2022年   425篇
  2021年   479篇
  2020年   539篇
  2019年   474篇
  2018年   477篇
  2017年   642篇
  2016年   686篇
  2015年   716篇
  2014年   1003篇
  2013年   1053篇
  2012年   1269篇
  2011年   1454篇
  2010年   1008篇
  2009年   1031篇
  2008年   1042篇
  2007年   1256篇
  2006年   1060篇
  2005年   925篇
  2004年   722篇
  2003年   661篇
  2002年   548篇
  2001年   479篇
  2000年   433篇
  1999年   335篇
  1998年   298篇
  1997年   249篇
  1996年   202篇
  1995年   188篇
  1994年   156篇
  1993年   95篇
  1992年   105篇
  1991年   94篇
  1990年   57篇
  1989年   44篇
  1988年   47篇
  1987年   23篇
  1986年   10篇
  1985年   16篇
  1984年   6篇
  1983年   10篇
  1982年   12篇
  1980年   8篇
  1979年   7篇
  1975年   3篇
  1966年   3篇
  1963年   2篇
  1961年   2篇
  1958年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The current article focuses on mass and thermal transfer analysis of a two-dimensional immovable combined convective nanofluid flow including motile microorganisms with temperature-dependent viscosity on top of a vertical plate through a porous medium, and a model has been developed to visualize the velocity slip impacts on a nonlinear partial symbiotic flow. The governed equations include all of the above physical conditions, and suitable nondimensional transfigurations are utilized to transfer the governed conservative equations to a nonlinear system of differential equations and obtain numerical solutions by using the Shooting method. Numerical studies have been focusing on the effects of intricate dimensionless parameters, namely, the Casson fluid parameter, Brownian motion parameter, thermophoresis parameter, Peclet number, bioconvection parameter, and Rayleigh number, which have all been studied on various profiles such as momentum, thermal, concentration, and density of microorganisms. The concentration boundary layer thickness and density of microorganisms increased as the Casson fluid parameter, Brownian and thermophoresis parameters increased, whereas the bioconvection parameter, Peclet number, and Rayleigh number increased. The thermal boundary layer thickness, concentration boundary layer thickness, and density of microorganisms all decreased. The velocity distribution decreases as the Peclet number, bioconvection, and thermophoresis parameters rise but rises as the Rayleigh number, Brownian motion parameter, and Casson fluid parameter rise. These are graphed via plots along with divergent fluid parameters.  相似文献   
2.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
3.
《Ceramics International》2021,47(21):29722-29729
As semiconductor devices have become miniaturized and highly integrated, interconnection problems such as RC delays, power dissipation, and crosstalk appear. To alleviate these problems, materials with a low dielectric constant should be used for the interlayer dielectric in nanoscale semiconductor devices. Silica aerogel as a porous structure composed of silica and air can be used as the interlayer dielectric material to achieve a very low dielectric constant. However, the problem of its low stiffness needs to be resolved for the endurance required in planarization. The purpose of this study is to discover the geometric effect of the electrical and mechanical properties of silica aerogel. The effects of porosity, the distribution of pores, the number of pores on the dielectric constant, and elastic modulus were analyzed using FEM. The results suggest that the porosity of silica aerogel is the main parameter that determines the dielectric constant and it should be at least 0.76 to have a very low dielectric constant of 1.5. Additionally, while maintaining the porosity of 0.76, the silica aerogel needs to be designed in an ordered open pores structure (OOPS) containing 64 or more pores positioned in a simple cubic lattice point to endure in planarization, which requires an elastic modulus of 8 GPa to prevent delamination.  相似文献   
4.
In recent years, Internet of Things (IoT) devices are used for remote health monitoring. For remotely monitoring a patient, only the health information at different time points are not sufficient; predicted values of biomarkers (for some future time points) are also important. In this article, we propose a powerful statistical model for an efficient dynamic patient monitoring using wireless sensor nodes through Bayesian Learning (BL). We consider the setting where a set of correlated biomarkers are measured from a patient through wireless sensors, but the sensors only report the ordinal outcomes (say, good, fair, high, or very high) to the sink based on some prefixed thresholds. The challenge is to use the ordinal outcomes for monitoring and predicting the health status of the patient under consideration. We propose a linear mixed model where interbiomarker correlations and intrabiomarker dependence are modeled simultaneously. The estimated and the predicted values of the biomarkers are transferred over the internet so that health care providers and the family members of the patient can remotely monitor the patient. Extensive simulation studies are performed to assess practical usefulness of our proposed joint model, and the performance of the proposed joint model is compared to that of some other traditional models used in the literature.  相似文献   
5.
Heat exchanger network synthesis (HENS) has progressed by using mathematical programming-based simultaneous methodology. Although various considerations such as non-isothermal mixing and bypass streams are applied to consider real world alternatives in modeling phase, many challenges are faced because of its properties within non-convex mixed-integer nonlinear programming (MINLP). We propose a modified superstructure, which contains a utility substage for use in considering multiple utilities in a simultaneous MINLP model. To improve model size and convergence, fixed utility locations according to temperature and series connections between utilities are suggested. The numbers of constraints, discrete, and continuous variables show that overall model size decreases compared with previous research. Thus, it is possible to expand the feasible search area for reaching the nearest global solution. The model's effectiveness and applications are exemplified by several literature problems, where it is used to deduce a network superior to that of any other reported methodology.  相似文献   
6.
A series of spray coating experiments were conducted on an UV-curable, polyurethane-modified, acrylate-based coating formulation with the aim to control defects, coating thickness, and thickness variation. Statistical approaches including design of experiment, residual examination, analysis of variance, and t-test were used in designing the experiments and analyzing data. Viscosity of formulation, atomizing pressure, liquid feeding pressure, distance between nozzle and substrate, and travel speed of substrate were the process variables studied. The ranges of process variables that gave defect-free coating were identified and used in the subsequent experiments to determine process variables and interactions that had significant contribution to the changes in coating thickness and thickness variation. All process variables studied were found to have contribution to the change in coating thickness, but they showed no significant contribution to the variation of coating thickness. No interaction displayed significant contribution. Confirmation tests performed on extra samples prepared with varying coating thicknesses indicated a good agreement with the experimental results. Additional samples were tested for total transmittance, transmission haze, adhesion, surface roughness, hardness, scratch hardness, abrasion resistance, and durability to attack of car wash chemicals. Spray coated samples showed slight improvement in the total transmittance over the uncoated samples, while maintaining the transmission haze and exhibiting rougher surfaces. Only samples with thin coatings were found to possess sufficient adhesion to the substrate. These thin coatings gave improved hardness, scratch hardness, and durability to car wash attack to the level comparable to commercial coated polycarbonate headlamp lenses, whilst giving better abrasion resistance.  相似文献   
7.
Traditional maximum power point tracking (MPPT) methods can hardly find global maximum power point (MPP) because output characteristics curve of photovoltaic (PV) array may have multi local maximum power points in irregular shadow, and thus easily fall into the local maximum power point. To address this drawback, Considering that sliding mode variable structure (SMVS) control strategy have such advantages as simple structure, fast response and strong robustness, and P&O method have the advantages of simple principle and convenient implementation, so a new algorithm combining SMVS control method and P&O method is proposed, besides, PI controller is applied to reduce system chattering caused by switching sliding surface. It is applied to MPPT control of PV array in irregular shadow to solve the problem of multi-peak optimization in partial shadow. In order to verity the rationality of the proposed algorithm, the experimental circuit is built, which achieves MPPT control by means of the proposed algorithm and P&O method. The experimental results show that compared with the traditional P&O algorithm, the proposed algorithm can fast track the global MPP, tracking speed increases by 60% and the relative error decreased by 20%. Moreover, the system becomes more stable near the MPP, the fluctuations of output power is greatly reduced, and thus make full use of solar energy.  相似文献   
8.
Monoclonal and recombinant antibodies are widely used for the diagnostics and therapy of cancer. They are generated to interact with cell surface proteins which are usually involved in the development and progression of cancer. Carbonic anhydrase XII (CA XII) contributes to the survival of tumors under hypoxic conditions thus is considered a candidate target for antibody-based therapy. In this study, we have generated a novel collection of monoclonal antibodies (MAbs) against the recombinant extracellular domain of CA XII produced in HEK-293 cells. Eighteen out of 24 MAbs were reactive with cellular CA XII on the surface of live kidney and lung cancer cells as determined by flow cytometry. One MAb 14D6 also inhibited the enzymatic activity of recombinant CA XII as measured by the stopped-flow assay. MAb 14D6 showed the migrastatic effect on human lung carcinoma A549 and renal carcinoma A498 cell lines in a ‘wound healing’ assay. It did not reduce the growth of multicellular lung and renal cancer spheroids but reduced the cell viability by the ATP Bioluminescence assay. Epitope mapping revealed the surface-exposed amino acid sequence (35-FGPDGENS-42) close to the catalytic center of CA XII recognized by the MAb 14D6. The variable regions of the heavy and light chains of MAb 14D6 were sequenced and their complementarity-determining regions were defined. The obtained variable sequences were used to generate recombinant antibodies in two formats: single-chain fragment variable (scFv) expressed in E. coli and scFv fused to human IgG1 Fc fragment (scFv-Fc) expressed in Chinese Hamster Ovary (CHO) cells. Both recombinant antibodies maintained the same specificity for CA XII as the parental MAb 14D6. The novel antibodies may represent promising tools for CA XII-related cancer research and immunotherapy.  相似文献   
9.
Chemical processes are becoming increasingly complicated, leading to an increase in process variables and more complex relationships among them. The vine copula has a significant advantage in portraying the dependence of high-dimensional variables. However, as the dimensions increase, the vine copula model incurs a high computational load; such pressure greatly reduces model efficiency. Relationships among variables in the industrial process are complex. Different variables may be strongly or weakly associated or even independent. This paper proposes a process monitoring method based on correlation variable classification and vine copula. The weighted correlation measure is first used to divide variables into a correlated subspace and weakly correlated subspace. Then, two vine structures, C-vine and D-vine, are applied to the correlated and weakly correlated subspaces, respectively. This method takes advantage of C-vine for correlated variables and the flexibility of D-vine for weakly correlated variables. Finally, comprehensive statistics are established based on different subspaces. Monitoring results of the numerical system and the Tennessee Eastman process demonstrate the effectiveness and validity of the proposed method.  相似文献   
10.
Rheological properties of MR fluids under large step strain shear are presented in this paper. The experiments were carried out using a rheometer with parallel-plate geometry. Under the large step strain shear, MR fluids behave as nonlinear viscoelastic properties, where the stress relaxation modulus, G(tγ), shows a decreasing trend with step strain. The experimental results indicate that G(tγ) obeys time-strain separability. Thus, a mathematical form based on finite exponential serials is proposed to predict MR behavior. In this model, G(tγ) is represented as the product of a linear stress relaxation, G(t), and the damping function, h(γ), i.e. G(tγ)=G(t) h(γ). G(t) is simply represented as a three-parameter exponential serial and h(γ) has a sigmoidal form with two parameters. The parameters are identified by adopting an efficient optimization method proposed by Stango et al. The comparison between the experimental results and the model-predicted values indicates that this mathematical model can accurately predict MR behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号