首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   2篇
电工技术   3篇
综合类   1篇
化学工业   78篇
机械仪表   3篇
轻工业   21篇
无线电   1篇
自动化技术   3篇
  2023年   2篇
  2022年   30篇
  2021年   28篇
  2020年   1篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   5篇
  1989年   2篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
1.
Auxin response factors (ARFs) play important roles in various plant physiological processes; however, knowledge of the exact role of ARFs in plant responses to water deficit is limited. In this study, SlARF4, a member of the ARF family, was functionally characterized under water deficit. Real-time fluorescence quantitative polymerase chain reaction (PCR) and β-glucuronidase (GUS) staining showed that water deficit and abscisic acid (ABA) treatment reduced the expression of SlARF4. SlARF4 was expressed in the vascular bundles and guard cells of tomato stomata. Loss of function of SlARF4 (arf4) by using Clustered Regularly Interspaced Short Palindromic Repeats/Cas 9 (CRISPR/Cas 9) technology enhanced plant resistance to water stress and rehydration ability. The arf4 mutant plants exhibited curly leaves and a thick stem. Malondialdehyde content was significantly lower in arf4 mutants than in wildtype plants under water stress; furthermore, arf4 mutants showed higher content of antioxidant substances, superoxide dismutase, actual photochemical efficiency of photosystem II (PSII), and catalase activities. Stomatal and vascular bundle morphology was changed in arf4 mutants. We identified 628 differentially expressed genes specifically expressed under water deficit in arf4 mutants; six of these genes, including ABA signaling pathway-related genes, were differentially expressed between the wildtype and arf4 mutants under water deficit and unlimited water supply. Auxin responsive element (AuxRE) elements were found in these genes’ promoters indicating that SlARF4 participates in ABA signaling pathways by regulating the expression of SlABI5/ABF and SCL3, thereby influencing stomatal morphology and vascular bundle development and ultimately improving plant resistance to water deficit.  相似文献   
2.
Association behavior and physical gelation mechanism of ABA triblock copolymer dissolved in B-selective solvent have been studied systematically from dilute to moderately concentrated solutions. Static and dynamic light scattering and nuclear magnetic resonance measurements for dilute solutions of poly(methyl methacrylate)-block-poly(tert-butyl acrylate)-block-poly(methyl methacrylate) (PMMA-PtBuA-PMMA) in 1-butanol (PtBuA selective solvent) indicated that PMMA-PtBuA-PMMA chains are molecularly dissolved above 50 °C. With decreasing temperature, the triblock copolymers form associated micelles consisting PMMA associated core and PtBuA shell. Linear dynamic viscoelastic measurements for solutions with moderate concentration (3.9-12.0 wt%) revealed that the system was viscous sol state at 60 °C. Drastic increase of shear storage modulus (G′) occurred with decreasing temperature, and at 25 °C, G′ showed rubbery plateau with weak frequency dependency, means the formation of elastic physical gel. The consistency between the temperature for micelle formation and that at the increase in G′ indicates that the physical gelation is owing to the network formation as the result of the association of PMMA chains and the bridging PtBuA chains connecting the PMMA cores. Master curves for the dynamic moduli were derived by time-temperature superposition along the frequency axis. Just above sol-gel transition concentration (Cgel), the master curves suggest the existence of fairy amount of aggregate that is not incorporated in the macroscopic network. With the increase in polymer concentration, the master curves become to reveal Maxwell-type viscoelasticity with narrow relaxation time distribution, suggesting the formation of transient network with easily generation and destruction of crosslinks. Concentration dependency of the plateau modulus is stronger than the theoretically expected, means the macroscopic transient network grows with polymer concentration by increasing the fraction of elastically effective bridging PtBuA chain above Cgel.  相似文献   
3.
研究了外源NO和脱落酸(ABA)对杨树气孔运动和SOD、POD活性的影响。结果表明:NO和ABA均可诱导杨树叶片气孔关闭,且NO有加强ABA诱导气孔关闭的作用。NO清除剂(C—PTIO)能显抑制NO和ABA对气孔关闭的诱导效应。不同浓度硝普钠(SNP)和ABA处理杨树离体叶片,SOD活性变化不明显,POD活性受到显抑制。粗酶液的体外实验结果表明,不同浓度SNP对POD活性的抑制呈明显的浓度及时间效应;而ABA对POD活性则几乎没有影响。说明在ABA调控气孔运动的过程中需要NO的参与,由此推测ABA对杨树叶片气孔运动的调节与NO对POD的抑制有关。  相似文献   
4.
5.
6.
7.
8.
Arundo donax has been recognized as a promising crop for biomass production on marginal lands due to its superior productivity and stress tolerance. However, salt stress negatively impacts A. donax growth and photosynthesis. In this study, we tested whether the tolerance of A. donax to salinity stress can be enhanced by the addition of 5-aminolevulinic acid (ALA), a known promoter of plant growth and abiotic stress tolerance. Our results indicated that root exposure to ALA increased the ALA levels in leaves along the A. donax plant profile. ALA enhanced Na+ accumulation in the roots of salt-stressed plants and, at the same time, lowered Na+ concentration in leaves, while a reduced callose amount was found in the root tissue. ALA also improved the photosynthetic performance of salt-stressed apical leaves by stimulating stomatal opening and preventing an increase in the ratio between abscisic acid (ABA) and indol-3-acetic acid (IAA), without affecting leaf methanol emission and plant growth. Supply of ALA to the roots reduced isoprene fluxes from leaves of non-stressed plants, while it sustained isoprene fluxes along the profile of salt-stressed A. donax. Thus, ALA likely interacted with the methylerythritol 4-phosphate (MEP) pathway and modulate the synthesis of either ABA or isoprene under stressful conditions. Overall, our study highlights the effectiveness of ALA supply through soil fertirrigation in preserving the young apical developing leaves from the detrimental effects of salt stress, thus helping of A. donax to cope with salinity and favoring the recovery of the whole plant once the stress is removed.  相似文献   
9.
10.
渗透胁迫对玉米内源ABA及PM H+ -ATPase活性影响   总被引:3,自引:0,他引:3  
用-1.0MPa的PEG-Hoagland溶液对抗旱性较强的陕8413和抗旱性较差的陕8410玉米品进行胁迫处理,结果发现,胁迫处理会导致细胞内源脱落酸(ABA)含量和质膜(PM)H^ -ATPase活性发生明显的变化,无论是胁迫还是对照,陕8413玉米幼叶生长部位细胞内源ABA含量和PMH^ -ATPase活性均高于陕8410,但在胁迫条件下,这种差异更明显,对玉米幼苗24h连续胁迫处理,在多数情况下,细胞内源ABA含量和PMH^ -ATPase活性维持在一般水平(但较对照高),且两之间没有发现直接的相关性,但在胁迫2h处,细胞内源ABA含量出现峰值,此时PMH^ -ATPase活性则在较低水平,在胁迫4h处,PMH^ -ATPase活性表现出很高的峰值,而此时细胞内源ABA水平则相对较低,两在各自峰值处存在一定的负相关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号