首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学工业   1篇
自动化技术   1篇
  2013年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 2 毫秒
1
1.
An automated negotiator is an intelligent agent whose task is to reach the best possible agreement. We explore a novel approach to developing a negotiation strategy, a ‘domain-based approach’. Specifically, we use two domain parameters, reservation value and discount factor, to cluster the domain into different regions, in each of which we employ a heuristic strategy based on the notions of temporal flexibility and bargaining strength. Following the presentation of our cognitive and formal models, we show in an extensive experimental study that an agent based on that approach wins against the top agents of the automated negotiation competition of 2012 and 2013, and attained the second place in 2014.  相似文献   
2.
There has been much R&D effort expended to develop pretreatments and coatings that allow the replacement of toxic, carcinogenic, mutagenic, environmentally hazardous chromates used as pretreatments and pigments in aircraft coating systems. There have been many claims for chromate replacement in primer and pretreatment systems for aircraft, but no systems presently are in use that can function and meet specifications without some form of chromate used in the pretreatment and/or primer. The Mg-rich primer technology developed at North Dakota State University and now in final commercial development at AKZO Nobel Aerospace Coatings shows that finally aerospace Al alloys can be protected against corrosion. With simple cleaning only or a non-chromate pretreatment, the Mg-rich primer (MgRP) + aerospace topcoat provides an aircraft protection system that give corrosion protection that equals or exceeds any system using chromate in any form. About 18 peer reviewed papers have been published and at least twice that many presentations at technical meetings describing this new aircraft primer technology. There are an extensive number of samples in outdoor exposure, and in exposure on small parts of aircraft like port-hole covers and doors, and the coating system has been in accelerated exposure cabinets of all sorts. In the first versions of the magnesium primer premature blistering was noted during immersion or B117 continuous salt spray testing which may be due to hydrogen generation from water contact at a particle. Efforts to control the level of activity of the magnesium have been successfully accomplished since the testing reported in this paper which controls this phenomenon. Current formulations meet and exceed the ASTM B117 test results of full chromate primer systems. Open circuit potential (OCP) measurements indicate an extended period of cathodic protection of the Al aircraft alloys such as AA 2024 T-3 and AA 7075 T-6. After this stage of protection, a combination of Mg oxide, hydroxide and carbonate compounds seem to give protection to the system, as we have seen corrosion protection given to samples for greater than 10,000 h of cyclic exposure for Mg-rich primers with good aerospace topcoats. Preliminary data are presented for other Mg alloys as pigments in metal-rich coating systems. All data indicates that the Mg-rich (or Mg-alloy pigment-rich) primer + aircraft topcoat system gives excellent corrosion protection by mechanisms entirely different from the modes of protection for aircraft alloys given by the toxic, carcinogenic chromate compounds now in use in all corrosion protection systems for aircraft. In most cases thus far examined, the protection, especially in cyclic exposure, exceeds the present chromate-based systems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号