首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6934篇
  免费   336篇
  国内免费   578篇
电工技术   127篇
综合类   214篇
化学工业   977篇
金属工艺   1581篇
机械仪表   246篇
建筑科学   26篇
矿业工程   70篇
能源动力   413篇
轻工业   52篇
水利工程   4篇
石油天然气   35篇
武器工业   32篇
无线电   1411篇
一般工业技术   1837篇
冶金工业   453篇
原子能技术   174篇
自动化技术   196篇
  2024年   5篇
  2023年   89篇
  2022年   129篇
  2021年   164篇
  2020年   132篇
  2019年   146篇
  2018年   141篇
  2017年   183篇
  2016年   180篇
  2015年   188篇
  2014年   255篇
  2013年   347篇
  2012年   371篇
  2011年   595篇
  2010年   361篇
  2009年   429篇
  2008年   414篇
  2007年   443篇
  2006年   428篇
  2005年   333篇
  2004年   293篇
  2003年   319篇
  2002年   271篇
  2001年   249篇
  2000年   241篇
  1999年   188篇
  1998年   157篇
  1997年   152篇
  1996年   112篇
  1995年   93篇
  1994年   76篇
  1993年   52篇
  1992年   74篇
  1991年   44篇
  1990年   64篇
  1989年   39篇
  1988年   38篇
  1987年   15篇
  1986年   12篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有7848条查询结果,搜索用时 875 毫秒
1.
《Ceramics International》2022,48(14):19818-19823
The aim of the present study was to examine the anti-coking and anti-carburizing behavior of amorphous AlPO4 coating. So, aluminum phosphate composition was synthesized by sol-gel process and applied on the AISI 304 stainless steel by dip coating technique. Anti-coking performance was examined in a tube furnace at 1000 °C for 30 min under Ethane (C2H6) atmosphere. Carburizing test was performed in a sealed charcoal medium at 1100 °C for a total of 30 h exposure time. Phase composition of the samples was analyzed by X-Ray Diffraction (XRD) after coking and carburizing tests. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) were employed to study the morphology and elemental analysis of the samples after coke and carbon formation experiments. Microhardness indenter was applied on the cross section of the carbon-exposed specimens to plot the hardness profile through the carburizing zone. The results of the coking experiment revealed catalytic coke formed on the uncoated surface, while irregular spherical coke with no trace of catalytic coke was formed on the coated surface, indicating the great anti-coking performance of the amorphous AlPO4 coating. The results of pack-carburizing test demonstrated that the thickness of the carbide layer formed on the bare surface was ~10 times greater than that of the coated sample. Hardness measurement for the amorphous AlPO4 coated sample detected lower values compared to those for the uncoated one at all distances from the surface, indicating less carbon diffusion occurred beneath the coated surface. In overall, the results declared that the amorphous AlPO4 coating could be a good candidate for surface protection of stainless steel against catalytic coke formation and carbon diffusion.  相似文献   
2.
To provide a basis for the high-temperature oxidation of ultra-high temperature ceramics (UHTCs), the oxidation behavior of Zr3[Al(Si)]4C6 and a novel Zr3[Al(Si)]4C6-ZrB2-SiC composite at 1500 °C were investigated for the first time. From the calculation results, the oxidation kinetics of the two specimens follow the oxidation dynamic parabolic law. Zr3[Al(Si)]4C6 exhibited a thinner oxide scale and lower oxidation rate than those of the composite under the same conditions. The oxide scale of Zr3[Al(Si)]4C6 exhibited a two-layer structure, while that of the composite exhibited a three-layer structure. Owing to the volatilization of B2O3 and the active oxidation of SiC, a porous oxide layer formed in the oxide scale of the composite, resulting in the degradation of its oxidation performance. Furthermore, the cracks and defects in the oxide scale of the composite indicate that the reliability of the oxide scale was poor. The results support the service temperature of the obtained ceramics.  相似文献   
3.
《Ceramics International》2022,48(20):29892-29899
It is very challenging for 3D printing based on the selective laser melting (SLM) technology to obtain cermet bulk materials with high density and homogeneous microstructures. In this work, the SLM process of the cermet powders was studied by both simulations and experiments using the WC-Co cemented carbides as an example. The results indicated that the evolution of the ceramic and metallic phases in the cermet particle during the heating, melting and solidification processes were all significantly inhomogeneous from atomic scale to mesoscale microstructures. As a consequence, the microstructural defects were caused intrinsically in the printed bulk material. The formation and growth of the bonding necks between the particles were mainly completed at the later stage of laser heating and the early stage of solidification. Both simulations and experiments demonstrated that thin amorphous layers formed at the ceramics/metal interfaces. This work disclosed the mechanisms for the evolution from the atomic scale to microstructure during the SLM printing of cermet powders, and discovered the origin of the defects in the printed cermet bulk materials.  相似文献   
4.
Naringin (NAR), a major flavanone (FVA) glycoside, is a component of food mainly obtained from grapefruit. We used NAR as a food additive to improve the solubility and permeability of hydrophobic polyphenols used as supplements in the food industry. The spray-dried particles (SDPs) of NAR alone show an amorphous state with a glass transition temperature (Tg) at 93.2 °C. SDPs of hydrophobic polyphenols, such as flavone (FVO), quercetin (QCT), naringenin (NRG), and resveratrol (RVT) were prepared by adding varying amounts of NAR. All SDPs of hydrophobic polyphenols with added NAR were in an amorphous state with a single Tg, but SDPs of hydrophobic polyphenols without added NAR showed diffraction peaks derived from each crystal. The SDPs with NAR could keep an amorphous state after storage at a high humidity condition for one month, except for SDPs of RVT/NAR. SDPs with NAR enhanced the solubility of hydrophobic polyphenols, especially NRG solubility, which was enhanced more than 9 times compared to NRG crystal. The enhanced solubility resulted in the increased membrane permeability of NRG. The antioxidant effect of the hydrophobic NRG was also enhanced by the synergetic effect of NAR. The findings demonstrated that NAR could be used as a food additive to enhance the solubility and membrane permeability of hydrophobic polyphenols.  相似文献   
5.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
6.
The multilayer ceramic composites (MLC) consist of two ceramic materials insoluble in each other and sequentially piled in a symmetric manner whereas they can be divided into two groups: multilayer composites with weak interfaces and composites with strong interfaces. The graphene added multilayer ceramic sandwich (GMCS) composite was developed. The multilayer stack of Si3N4 with 5 and 30 wt% graphene addition were stratified in sandwich structure. So formed multilayer stacks with 5 and 7 layers were sintered by hot issostatic pressing (HIP). The homogenity of graphene addition, the effect of layered structures and the position of layers with lower and higher graphene content on the final properties were studied.  相似文献   
7.
Monomers and their polymers containing 3-arylcarbazolyl electrophores have been synthesized by the multi-step synthetic route. The materials were characterized by thermo-gravimetric analysis, differential scanning calorimetry and electron photoemission technique. The polymers represent materials of high thermal stability having initial thermal degradation temperatures in the range of 331–411 °C. The glass transition temperatures of the amorphous polymeric materials were in the rage of 148–175 °C. The electron photoemission spectra of thin layers of monomers showed ionization potentials in the range of 5.6–5.65 eV. Hole-transporting properties of the polymers were tested in the structures of organic light emitting diodes with Alq3 as the green emitter. The device containing hole-transporting layers of polyether with 3-naphthylcarbazolyl groups exhibited the best overall performance with a maximum current efficiency of 3.3 cd/A and maximum brightness of about 1000 cd/m2.  相似文献   
8.
《Ceramics International》2022,48(18):25933-25939
In order to gain more insights into the influence of rare earth elements on the melt structure of SiO2–CaO–Al2O3–MgO glass ceramics, Raman and X-ray photoelectron spectroscopy techniques were used to study the influence of La2O3 on the Si–O/Al–O tetrahedron structure within SiO2–CaO–Al2O3–MgO–quenched glass samples in this study. Results showed that some Raman peak shapes at low frequencies (200–840 cm?1) changed significantly after the addition of La2O3, compared to the high frequency (840–1200 cm?1) region that corresponds to the [SiO4] structure, suggesting that the depolymerization of the low-frequency T–O–T (T=Si or Al) structure was more prevalent with La3+ addition. Besides, the depolymerization extent of the Si–O/Al–O tetrahedral network varied when the melt composition altered. Most notably, depolymerization is the most significant at a low CaO/SiO2 ratio (0.25) and a high Al2O3 content (8%). Meanwhile, La3+ can promote the transformation of Si–O–Si and Al–O–Al bonds to the Si–O–Al ones, thereby forming a complex ionic cluster network interwoven with Si–O and Al–O tetrahedrons.  相似文献   
9.
The mechanical property of age‐hardenable Al‐alloys is governed by the state of ageing, which determines the microstructure and consequently, their corrosion behavior which is a vital aspect for a number of applications. This article presents a comparative assessment of corrosion behavior of under‐, peak‐ and over‐aged Al‐Mg‐Si alloy. Corrosion characteristics have been determined via immersion tests in 0.1 M ortho‐phosphoric acid solution and intergranular corrosion (IGC) tests. Corroded surfaces are examined by field emission scanning electron micrographs‐energy dispersive spectroscopy and 3D optical profilometer. The obtained results reveal that the corrosion rate at a specific immersion time as well as the depth of IGC increases in the order for under‐, peak‐, and over‐aged states. Irrespective of the state of ageing, corrosion loss increases linearly but the rate of corrosion decreases rapidly with increasing immersion time. The dominant mode of corrosion in under‐aged alloy is identified as localized pitting, while peak‐aged is highly susceptible to IGC in contrast extensive pitting corrosion is observed for over‐aged alloy. The observed differences in corrosion behavior are explained considering characteristics of precipitates. Formation of β (Mg2Si) in case of over‐aged alloy and presence of inclusions like AlFeMnSi particles are found to accelerate pitting corrosion.  相似文献   
10.
In this work, we report the tuning effect of the Si substitution on the magnetic and high frequency electromagnetic properties of R2Fe17 compounds and their paraffin composites. It is found that the introduction of Si can remarkably improve the magnetic and electromagnetic properties of the R2Fe17 compounds, making the R2Fe17–xSix-paraffin composites excellent microwave absorption materials (MAMs). By introducing the Si element, their saturation magnetizations decrease slightly, while much higher Curie temperatures are obtained. Furthermore, better impedance match is reached due to the decrease of the high-frequency permittivity ε′ by about 40%–50%, which finally enhances the performance of the microwave absorption. The peak frequency (fRL) of the reflection loss (RL) curve moves toward high frequency domain and the qualified bandwidth (QB, RL ≤ ?10 dB) increases remarkably. The maximum QB of 3.3 GHz (12.0–15.3 GHz) is obtained for the Sm1.5Y0.5Fe15Si2-paraffin composite (d = 1.0 mm) and the maximum RL of ?53.6 dB is achieved for Nd2Fe15Si2-paraffin composite (d = 2.2 mm), both surpassing most of the reported MAMs. Additionally, a distinguished dielectric microwave absorption peak is observed, which further increases the QB in these composites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号