首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   8篇
  国内免费   3篇
电工技术   2篇
化学工业   25篇
机械仪表   9篇
轻工业   27篇
一般工业技术   7篇
原子能技术   2篇
自动化技术   7篇
  2023年   2篇
  2022年   6篇
  2021年   6篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   6篇
  2014年   2篇
  2013年   12篇
  2012年   8篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2006年   1篇
  2005年   3篇
  2000年   1篇
  1997年   1篇
  1994年   2篇
排序方式: 共有79条查询结果,搜索用时 46 毫秒
1.
《Ceramics International》2022,48(15):21502-21514
Based on the good osteogenic and angiogenic effects of silicon and magnesium elements, three types of micro-nano magnesium-containing silicates (MS), including akermanite (Ake, Ca2MgSi2O7), diopside (Dio, CaMgSi2O6) and forsterite (For, Mg2SiO4), were incorporated into calcium phosphate cement (CPC) to improve its osteogenic and angiogenic performances for clinical application. In this present work, the physicochemical properties, osteogenesis and angiogenesis of MS/CPCs (Ake/CPCs, Dio/CPCs and For/CPCs) were investigated systematically and comparatively. The results showed that all MS/CPCs had good biomineralization and significantly stimulated the osteogenic differentiation of mBMSCs and angiogenic differentiation of HUVECs, respectively. Besides, the stimulating effects were related to not only the category of MS, but also the content of MS. The For/CPCs had a good angiogenic property but their initial setting times were beyond 60 min. The Dio/CPCs showed the lowest biological performance among the three groups of MS/CPCs due to the lower ion release (Si and Mg). The Ake was the ideal modifier that could provide CPC with appropriate physicochemical properties, better osteogenesis and angiogenesis. Simultaneously, a higher addition (10 wt%) of akermanite resulted in the best potential to bone regeneration. Taken together, this research provides an effective approach to improve the overall performance of CPC, and 10Ake/CPC is of great promising prospect in bone repair.  相似文献   
2.
Tumor progression is usually characterized by proliferation, migration, and angiogenesis, which is essential for supplying both nutrients and oxygen to the tumor cells. Therefore, targeting angiogenesis has been considered a promising therapeutic strategy for cancer prevention and treatment. In the present study, we demonstrated that in addition to suppressing lung cancer cell proliferation and migration in vitro, 10-hydroxycamptothecin (10-HCPT) is also capable of inhibiting angiogenesis in vivo with a miR-181a-dependent manner. Mechanistically, by upregulating miR-181a, which in turn downregulating FOXP1, 10-HCPT can inhibit the PI3K/Akt/ERK signaling pathwaymediated angiogenesis. Furthermore, reduced levels of miR-181a have been found in both lung cancer cell lines and xenograft with concurrently elevated levels of FOXP1, VEGF, bFGF, and HDGF. Consistent with the findings from the in vitro experiments, miR-181a impairs neovascularization in our xenograft model. In summary, our findings have not only established the anti-oncogenic role of miR-181a in lung cancer angiogenesis but also suggest that 10-HCPT could be a potential therapeutic reagent for lung cancer treatment.  相似文献   
3.
4.
In a computer simulation, growth of a capillary network is driven by a stochastic process on a planar hexagonal grid. Starting at a point source, the probabilities for the formation of new capillary elements depend on local biophysical knowledge. This knowledge is mainly derived from the flow theorem of Hagen–Poiseuille and the diameter exponent Δ. The hexagonal grid is visualized as being supported by a cylinder or a sphere. An arterial tree results from the adaptive diameter augmentation, and is considered to have limited fractal properties. The dimension of its border, and the time course of growth and of blood pressure are compared with biological data from the chorioallantoic membrane (CAM) of incubated chicken eggs. The model is discussed in view of mechanosensitivity and cell–matrix interactions of endothelial cells, and CAM haemodynamics.  相似文献   
5.
One major obstacle for successful application of nanoparticles in medicine is its potential nanotoxicity on the environment and human health. In this study, we evaluated the cytotoxicity effect of dimercaptosuccinic acid-coated iron oxide (DMSA-Fe2O3) using cultured human aortic endothelial cells (HAECs). Our results showed that DMSA-Fe2O3 in the culture medium could be absorbed into HAECs, and dispersed in the cytoplasm. The cytotoxicity effect of DMSA-Fe2O3 on HAECs was dose-dependent, and the concentrations no more than 0.02 mg/ml had little toxic effect which were revealed by tetrazolium dye assay. Meanwhile, the cell injury biomarker, lactate dehydrogenase, was not significantly higher than that from control cells (without DMSA-Fe2O3). However, the endocrine function for endothelin-1 and prostacyclin I-2, as well as the urea transporter function, was altered even without obvious evidence of cell injury in this context. We also showed by real-time PCR analysis that DMSA-Fe2O3 exposure resulted in differential effects on the expressions of pro- and anti-apoptosis genes of HAECs. Meanwhile, it was noted that DMSA-Fe2O3 exposure could activate the expression of genes related to oxidative stress and adhesion molecules, which suggested that inflammatory response might be evoked. Moreover, we demonstrated by in vitro endothelial tube formation that even a small amount of DMSA-Fe2O3 (0.01 and 0.02 mg/ml) could inhibit angiogenesis by the HAECs. Altogether, these results indicate that DMSA-Fe2O3 have some cytotoxicity that may cause side effects on normal endothelial cells.  相似文献   
6.
The vitreous humor (VH) is the largest component of the eye. It is a colorless, gelatinous, highly hydrated matrix that fills the posterior segment of the eye between the lens and retina in vertebrates. In VH, a diversity of proteins that can influence retinal physiology is present, including growth factors, hormones, proteins with transporter activity, and enzymes. More importantly, the protein composition of VH has been described as being altered in a number of disease states. Therefore, attempts aiming at establishing a map of VH proteins and detecting putative biomarkers for ocular illness or protein fluctuations with putative physiologic significance were conducted over the last two decades, using proteomic approaches. Proteomic strategies often involve gel-based or LC techniques as sample fractioning approaches, subsequently coupled with MS procedures. This set of studies resulted in the proteomic characterization of a range of ocular disease samples, with particular incidence on diabetic retinopathy. However, practical therapeutic applications arising from these studies are scarce at the moment. A pertinent example of therapeutic targets arising from VH proteomics has emerged concerning vasoproliferative factors present in the vitreous, which should be involved in neovascularization and subsequent fibrovascular proliferation of the retina, in ocular disease context. Therefore, this review attempts to sum up the information acquired from the proteomic approaches to ocular disease conducted in VH samples, highlighting its clinical potential for disclosing ocular disease mechanisms and engendering pharmacological therapeutic treatments.  相似文献   
7.
Fractal dimension has often been applied as a parameter of complexity, related to, for example, surface roughness, or for classifying textures or line patterns. Fractal dimension can be estimated statistically, if the pattern is known to be self-similar. However, the fractal dimension of more general patterns cannot be estimated, even though the concept may be retained to characterize complexity. We here show that the usual statistical methods, e.g. the box counting method, are not appropriate to measure complexity. A recently developed approach, the extended counting method, whose properties are closer to what fractal dimension means, is considered here in more detail. The methods are applied to geometric and to blood vessel patterns. The weak assumptions about the structure, and the lower variance of the estimate, suggest that the extended counting method has beneficial properties for comparing complexity of naturally occurring patterns.  相似文献   
8.
《Ceramics International》2023,49(10):15588-15598
Biphasic calcium phosphate (BCP) is a highly study bone defect repair material with adjustable degradation, perfect osteoconduction and good osteoinduction. As one of the essential trace elements, magnesium (Mg) possesses the abilities of pro-osteogenesis and pro-angiogenesis. Therefore, Mg doping may further expand the application of BCP in bone defect repair, but few studies focus on promoting the osteogenesis and angiogenesis of BCP simultaneously by Mg doping, and the optimal doping amount of Mg remains to be explored. In this study, the physicochemical and biological properties of BCP scaffold affected by Mg doping were systematically study. Results showed that Mg doping enhanced the sintering of BCP scaffold, resulting in the decrease of degradation rate at the initial soaking period. However, the introduction of Mg damaged the lattice stability of BCP, leading to the increase of BCP degradation rate at the later soaking period. BCP scaffolds with Mg doping content ≥3 mol.% could achieve a long-term sustained release of Mg. The ion microenvironment created by Mg-doped scaffolds was simultaneously conducive to the osteogenic differentiation of stem cells and the enhanced angiogenic activity of endothelial cells. The scaffold doped with 5 mol.% of Mg (Mg5–S) showed the highest efficiency in promoting osteogenic differentiation. Mg-doped BCP scaffolds with a doping content ≥3 mol.%, especially Mg5–S, significantly improved the proliferation and angiogenic differentiation of endothelial cells. Based on these, we believe that the optimal doping content of Mg in BCP is 5 mol.%, and Mg5–S has great application potential in bone defect repair.  相似文献   
9.
Boron is considered to influence the performance of several metabolic enzymes and boron deficiency is associated with impaired growth and abnormal bone development. As such, boron is a beneficial bioactive element for animals and humans. It is also well known that boron stimulates wound healing and improves bone health. The addition of boron in different proportions to bioactive glasses has significant effects on glass structure, glass processing parameters, biodegradability, biocompatibility, bioactivity and cytotoxicity. Different compositions of bioactive glasses (BGs) containing boron, including boron-doped, borosilicate and borate glasses, are being investigated for bone and soft tissue engineering under the premise that these BGs are suitable carriers of boron, indicating controlled release of B species in the biological environment. This paper reviews up to date research and applications of borate, borosilicate, and boron doped silicate and phosphate BGs focussing on their physical, structural, degradation and biological properties for hard and soft tissue regeneration.  相似文献   
10.
The cyclic peptide YG5 and the t-butyioxycarbonyl(Boc)-modified analog(Boc-YG5)were labeled with radioiodine.The radiochemical purity of 131I-YG5 or 131I-Boc-YG5 was almost 100% after purification by RP-HPLC.Biodistribution in BALB/C nude mice bearing MCF-7 tumor was measured.After t-butyloxycarbonyl(Boc)-modification,the 131I-Boc-YG5 was quite resistant to deiodination in vivo,resulting in negligible radioactivity accumulation in thyroid.The radiotracer clearance in tumor became faster,the absolute tumor uptake decreased for131I-Boc-YG5,but the tumor-to-tissue uptake ratios increased.The uptake ratios of tumor to muscle,blood,heart,and lung at 1 h post injection reached 4.73,1.70,4.09 and 1.70,respectively.It is demonstrated that Boc-group is an effective prosthetic one to prevent deiodination in vivo and improve tumor imaging for radioiodinated NGR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号