首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   6篇
  国内免费   2篇
电工技术   2篇
综合类   2篇
化学工业   38篇
金属工艺   2篇
机械仪表   4篇
建筑科学   35篇
能源动力   2篇
轻工业   39篇
石油天然气   4篇
一般工业技术   12篇
原子能技术   1篇
自动化技术   2篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   7篇
  2020年   10篇
  2019年   4篇
  2018年   9篇
  2017年   5篇
  2016年   2篇
  2014年   5篇
  2013年   8篇
  2012年   6篇
  2011年   15篇
  2010年   6篇
  2009年   11篇
  2008年   8篇
  2007年   11篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1996年   2篇
排序方式: 共有143条查询结果,搜索用时 0 毫秒
1.
Antimicrobial resistance has long been viewed as a lethal threat to global health. Despite the availability of a wide range of antibacterial medicines all around the world, organisms have evolved a resistance mechanism to these therapies. As a result, a scenario has emerged requiring the development of effective antibacterial drugs/agents. In this article, we exclusively highlight a significant finding reported by Zbořil and associates (Adv. Sci. 2021, 2003090). The authors construct a covalently bounded silver-cyanographene (GCN/Ag) with the antibacterial activity of 30 fold higher than that of free Ag ions or typical Ag nanoparticles (AgNPs). Ascribed to the strong covalent bond between nitrile and Ag, an immense cytocompatibility is shown by the GCN/Ag towards healthy human cells with a minute leaching of Ag ions. Firm interactions between the microbial membrane and the GCN/Ag are confirmed by molecular dynamics simulations, which rule out the dependence of antibacterial activity upon the Ag ions alone. Thus, this study furnishes ample scope to unfold next-generation hybrid antimicrobial drugs to confront infections arising from drug and Ag-resistant bacterial strains.  相似文献   
2.
于Britton-Robinson-CH3CHO体系中,采用1.5次微分测定了阿米卡星(含伯氨基)、小诺霉素(含仲氨基)等氨基糖甙抗生素,检测限为2.8×10-7mol/L。同时用不同的电化学方法对该类抗生素在悬汞电极上的吸附特征和电极过程作了探讨,测得控制电极反应速度步骤的电子数为2,氢离子数为1,从而导出其反应方程式。方法用于尿、血清及软膏样品中痕量该类抗生素的测定,回收率均在90%~115%之间。  相似文献   
3.
Twenty‐five strains, isolated from raw, non‐pasteurised, organic whey samples, were identified phenotypically and genotypically. Biochemical tests were performed, and enzyme profiles, antibiotic resistance and antimicrobial properties were investigated. Sixteen strains were identified as genus Lactobacillus. Based on 16S rDNA gene sequence, the strains were identified as Lb. plantarum and Lb. fermentum. All of the strains had β‐galactosidase activity, and some of them reduced nitrate content. All strains utilised carbohydrates. The tested strains were characterised by low or average lipolytic and esterolytic activity. Moreover, the strains showed low proteolytic activity which is advantageous for their use as starter cultures for foods with low protein content. Strains Lb. fermentum S20, SM1, SM3, S2R and Lb. plantarum SM5 produced harmful N‐acetyl‐β‐glucosaminidase; moreover, the strain S20 produced also β‐glucuronidase. None of the strains produced α‐chymotrypsin. In phenotypic studies, most of the test strains were susceptible to gentamicin, ampicillin, tetracycline, chloramphenicol, penicillin and erythromycin. Strains Lb. plantarum S1 and Lb. fermentum S4, S7, S8, S10, SM1 and SM3 did not possess any transfer resistance genes. Antagonistic activity of the culture LAB strains was assessed as high or moderate in relation to the indicator strains, with the greatest zones of inhibition for E.coli and the smallest for L. monocytogenes ATCC 15313. This study reveals that the LAB strains isolated from organic whey have high potential for food application. Some strains of species Lb. fermentum (S4, S7, S8, S10) have been identified as the best candidates.  相似文献   
4.
Constructing heterojunction provides a promising tactic to improve the photocatalytic efficiency of catalysts. In this paper, hierarchical FeIn2S4/BiOBr heterostructure photocatalysts were prepared by facile two step methods and applied to effectively remove ciprofloxacin (CIP) and tetracycline (TC) under visible light. Compared to single catalyst, FeIn2S4/BiOBr hybrids display significantly improved photocatalytic activity. Among the series, 6 wt% FeIn2S4/BiOBr shows the optimal photocatalytic performance, where the degradation efficiencies of TC and CIP are 3.15 and 2.88 times greater than pure BiOBr, respectively. Such an improvement could arise from the S-scheme heterojunctions and unique hierarchical structures, which brings stronger light absorption, higher photoexcited charge separation efficiency and superior redox ability. Furthermore, 6 wt% FeIn2S4/BiOBr composite exhibits excellent stability and reusability. Radical capture experiments and EPR analyses uncover that O2, h+ and OH are primarily reactive substances during photocatalytic removal of TC. The products of TC were detected by LC-MS analyses and possible decomposition paths are proposed. Eventually, a possible photodegradation mechanism over FeIn2S4/BiOBr S-scheme heterojunction is proposed. These findings supply new perspective for the simple synthesis of S-scheme photocatalysts with promising applications in environment remediation.  相似文献   
5.
6.
Component analysis and risk assessment of biogas slurry from biogas plants   总被引:1,自引:0,他引:1  
Massive amounts of biogas slurry are produced due to the development of biogas plants. The pollution features and the risk of biogas slurry were fully evaluated in this work. Thirty-one biogas slurry samples were collected from sixteen different cities and five different raw materials biogas plants (e.g. cattle manure, swine manure, straw-manure mixture, kitchen waste and chicken manure). The chemical oxygen demand (COD), ammonia nitrogen (NH4+ - N), anions (e.g. Cl-,SO42-, NO3- and PO4-3), antibiotics (e.g. sulphonamides, quinolones, β2-receptor agonists, macrolides, tetracyclines and crystal violet) and heavy metals (e.g. Cu, Cd, As, Cr, Hg, Zn and Pb) contents from these biogas slurry samples were systematically investigated. On this basis, risk assessment of biogas slurry was also performed. The concentrations of COD, NH4+ and PO4-3 in biogas slurry samples with chicken manure as raw material were significantly higher than those of other raw materials. Therefore, the biogas slurry from chicken manure raw material demonstrated the most serious eutrophication threat. The antibiotic contents in biogas slurry samples from swine manure were the highest among five raw materials, mostly sulphonamides, quinolones and tetracyclines. Biogas slurry revealed particularly serious arsenic contamination and moderate potential ecological risk. The quadratic polynomial stepwise regression model can quantitatively describe the correlation among NH4+ - N, PO4-3 and heavy metals concentration of biogas slurry. This work demonstrated a universal potential threat from biogas slurry that can provide supporting data and theoretical basis for harmless treatment and reuse of biogas slurry.  相似文献   
7.
8.
The development and proliferation of antibiotic resistance in pathogenic, commensal, and environmental microorganisms is a major public health concern. The extent to which human activities contribute to the maintenance of environmental reservoirs of antibiotic resistance is poorly understood. In the current study, wastewater treatment plants (WWTPs) were investigated as possible sources of tetracycline resistance via qualitative PCR and quantitative PCR (qPCR). Various WWTPs and two freshwater lakes were surveyed for the presence of an array of 10 tetracycline resistance determinants (tet(R)): tet(A)-(E), tet(G), tet(M), tet(O), tet(Q), tet(S). All WWTP samples contained more different types of tet(R) genes, as compared to the lake water samples. Gene copy numbers of tet(G) and tet(Q) in these samples were quantified via qPCR and normalized to both the volume of original sample and to the amount of DNA extracted per sample (a proxy for bacterial abundance). Concentrations of tet(Q) were found to be highest in wastewater influent while tet(G) concentrations were highest in activated sludge. Investigation of the effects of UV disinfection on wastewater effluent showed no reduction in the number of detectable tet(R) gene types.  相似文献   
9.
Degradation of antibiotics in water by non-thermal plasma treatment   总被引:1,自引:0,他引:1  
The decomposition of three β-lactam antibiotics (amoxicillin, oxacillin and ampicillin) in aqueous solution was investigated using a dielectric barrier discharge (DBD) in coaxial configuration. Solutions of concentration 100 mg/L were made to flow as a film over the surface of the inner electrode of the plasma reactor, so the discharge was generated at the gas-liquid interface. The electrical discharge was operated in pulsed regime, at room temperature and atmospheric pressure, in oxygen. Amoxicillin was degraded after 10 min plasma treatment, while the other two antibiotics required about 30 min for decomposition. The evolution of the degradation process was continuously followed using liquid chromatography-mass spectrometry (LC-MS), total organic carbon (TOC) and chemical oxygen demand (COD) analyses.  相似文献   
10.
Eighteen bifidobacteria, six isolated from infant feces and 12 commercial strains (of which 10 were purchased from the American Type Culture Collection), were tested for sensitivity to 14 antibiotics and four bacteriocins including nisin A, nisin Z, pediocin PA-1 and mutacin B-Ny266. All bacteria were resistant to vancomycin, kanamycin, neomycin and streptomycin. Infant isolates were more sensitive than commercial strains to cloxacillin, ampicillin, chloramphenicol, tetracycline, rifampicin and novobiocin. Sensitivity to bacteriocins determined by a microplate assay varied widely. Generally, nisin A was the most effective bacteriocin followed by nisin Z and mutacin B-Ny266. Pediocin PA-1 appeared to have no inhibition at 70 μg mL−1. Commercial strains showed relatively variable sensitivity to bacteriocins compared to infant isolates, which were inhibited within a narrow range of bacteriocin concentration. Bacteriocin tolerance could be easily gained by prolonging the exposure time. Death–time curves and transmission electron microscopy (TEM) of logarithmic and stationary cells of two strains (Bifidobacterium adolescentis ATCC 15704 and infant isolate Bifidobacterium sp. RBL67) incubated with twice the minimum inhibitory concentration of nisin A and nisin Z for 3 h revealed that log-phase cells were more sensitive than stationary-phase cells. TEM showed that the cell membrane is the most likely site of bactericidal effects of nisin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号