首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10854篇
  免费   1513篇
  国内免费   442篇
电工技术   239篇
综合类   617篇
化学工业   7324篇
金属工艺   240篇
机械仪表   291篇
建筑科学   109篇
矿业工程   124篇
能源动力   528篇
轻工业   467篇
水利工程   194篇
石油天然气   946篇
武器工业   123篇
无线电   224篇
一般工业技术   804篇
冶金工业   148篇
原子能技术   286篇
自动化技术   145篇
  2024年   35篇
  2023年   216篇
  2022年   303篇
  2021年   382篇
  2020年   395篇
  2019年   361篇
  2018年   321篇
  2017年   338篇
  2016年   526篇
  2015年   476篇
  2014年   531篇
  2013年   689篇
  2012年   671篇
  2011年   721篇
  2010年   513篇
  2009年   669篇
  2008年   611篇
  2007年   689篇
  2006年   577篇
  2005年   582篇
  2004年   483篇
  2003年   427篇
  2002年   365篇
  2001年   345篇
  2000年   263篇
  1999年   236篇
  1998年   156篇
  1997年   142篇
  1996年   149篇
  1995年   111篇
  1994年   90篇
  1993年   74篇
  1992年   67篇
  1991年   47篇
  1990年   32篇
  1989年   26篇
  1988年   20篇
  1987年   31篇
  1986年   7篇
  1985年   25篇
  1984年   24篇
  1983年   30篇
  1982年   20篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1959年   10篇
  1951年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Investigation on the miniaturized parallel multichannel-based devices packed with glass beads to improve the mass exchange execution is the critical focal point of the current study. One of the essential parameters to specify the miniaturized devices' flow distribution is the residence time distribution (RTD). In the present context, the RTDs of a liquid tracer were investigated for the air-water multiphase flows (concurrent) across the multichannel-based miniaturized devices (comprising of 11 similar dimensional parallel channels). The devices were variable in height and packed with glass beads. The conductivity estimations generated the RTD curves and were addressed by the axial dispersion model (ADM). The fluid-flow rates differed within the range of 5–23 ml min−1. The axial dispersion coefficients and the rate of the specific energy dispersion were investigated. The effects of pressure difference and geometry on the hydrodynamic attributes and mixing properties were well-illustrated, and the new correlations were suggested.  相似文献   
2.
3.
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface.  相似文献   
4.
The purpose of this study was to increase the water solubility and potential bioavailability of quercetin by encapsulation in whey protein isolate (WPI) based on a green, efficient pH-driven method. According to the results, the water solubility of quercetin increased by 346.9: times after loading into WPI nanoparticles. When the initial quercetin concentration was 0.25 mg mL−1 and WPI was 2% w/v, the encapsulation efficiency reached 94.1%, the Z-average diameter was 36.63 nm, and the zeta potential was −36.4 mV at pH 7.0. The fluorescence spectroscopy assay suggested the molecular complexation of quercetin and WPI at pH 12.0. X-ray diffraction assay indicated the enclosure of amorphous quercetin in WPI. Correspondingly, the bioaccessibility increased from 2.76% to 31.23% and the Caco-2 cell monolayer uptake increased from 0% to 2.12% after nanoencapsulation. This work confirmed that the pH-driven method is an effective approach to prepare WPI–quercetin nanocapsules to improve physical and potentially biological properties of quercetin.  相似文献   
5.
《Ceramics International》2022,48(18):25975-25983
This work reports the innovative development of a borosilicate glass/Al2O3 tape for LTCC applications using an eco-friendly aqueous tape casting slurry. Polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) were the respective dispersants, while carboxymethyl cellulose (CMC) and styrene acrylic emulsion (SA) were the respective binders. The results showed that PVP was more suitable than PAA as the dispersant for the aqueous casting slurry, and that 1.5 wt% PVP would achieve well dispersion of CABS glass/Al2O3 powder in the aqueous slurry. Moreover, a small amount of 2.0 wt% CMC binder could yield smooth CABS glass/Al2O3 tapes crack free. A high-quality CABS glass/Al2O3 tape with a smooth surface was made from an aqueous slurry containing 1.5 wt% PVP dispersant, 2.0 wt% CMC binder, and 2.0 wt% PEG-400 plasticizer. The density, tensile strength, and surface roughness of the green tape were 2.05 g/cm3, 0.87 MPa, and 148 nm, respectively. The resulting CABS glass/Al2O3 composites sintered at 875 °C exhibited a bulk density of 3.14 g/cm3, a dielectric constant of 8.09, a dielectric loss of 1.0 × 10?3, a flexural strength of 213 MPa, a thermal expansion coefficient of 5.30 ppm/°C, and a thermal conductivity of 3.2 W m?1 K?1, thus demonstrating its broad prospects in LTCC applications.  相似文献   
6.
A venturi device is commonly used as an integral part of a multiphase flowmeter (MPFM) in real-time oil-gas production monitoring. Partial flow mixing is required by installing the venturi device vertically downstream of a blind tee pipework that conditions the incoming horizontal gas-liquid flow (for an accurate determination of individual phase fraction and flow rate). To study the flow-mixing effect of the blind tee, high-speed video flow visualization of gas-liquid flows has been performed at blind tee and venturi sections by using a purpose-built transparent test rig over a wide range of superficial liquid velocities (0.3–2.4 m/s) and gas volume fractions (10–95%). There is little ‘homogenization’ effect of the blind tee on the incoming intermittent horizontal flow regimes across the tested flow conditions, with the flow remaining intermittent but becoming more axis-symmetric and predictable in the venturi measurement section. A horizontal (blind tee) to vertical (venturi) flow-pattern transition map is proposed based on gas and liquid mass fluxes (weighted by the Baker parameters). Flow patterns can be identified from the mean and variance of a fast electrical capacitance holdup measured at the venturi throat.  相似文献   
7.
Individually, photoredox catalysis (PC) and photodynamic therapy (PDT) are well-established concepts that have experienced a remarkable resurgence in recent years, leading to significant progress in organic synthesis for PC and clinical approval of anticancer drugs for PDT. But, very recently, new photoredox catalyst systems based on Ir(III) and Ru(II) complexes have garnered significant interest because they can simultaneously be used as PDT agents apart from their demonstrated PC activity. This highlight discusses the unique PC behavior of emerging Ir(III)- and Ru(II)-based systems while also examining their potential PDT activity in cancer treatment.  相似文献   
8.
9.
10.
《Ceramics International》2022,48(13):18658-18666
Samples of the ternary system MgO–Al2O3–SiO2 with stoichiometric composition in relation to α-cordierite (Mg2Al4Si5O18), consisting of 22.2 mol% MgO, 22.2 mol% Al2O3, and 55.6 mol% SiO2, were activated in a low energy mill with a constant speed of 100 rpm, in an aqueous medium. The precursors used were corundum (Al2O3), silica gel HF254 type 60 (SiO2), and periclase (MgO). The objective of the present study was to evaluate the effect of mechanochemical activation on the solid-state synthesis of α-cordierite, using a low energy ball mill. Another objective was to shed light on the effect of mechanochemical activation on the steps of α-cordierite formation. For this end several grinding conditions were evaluated, varying the time and mass ratio of precursors/grinding elements, as well as calcination at different temperatures between 950 °C and 1350 °C for 2 h. The samples were analyzed for the determination of the formed phases by Infrared (IR) and X-ray Diffraction (XRD). The phases identified in uncalcined samples were brucite (Mg(OH)2), forsterite (Mg2SiO4), enstatite (MgSiO3), spinel (MgAl2O3), amorphous silica (SiO2), corundum (α-Al2O3), and zirconia (monoclinic and tetragonal ZrO2). The lowest temperature corresponding to the formation of α-cordierite (α-Mg2Al4Si5O18) was 1150 °C and a considerable amount of this phase (16.2%) was observed at this temperature, for the sample with the higher mechanochemical activation. In a solid-state reaction, α-cordierite is normally obtained at around 1400 °C, therefore, the formation of this phase at 1150 °C confirms that the mechanochemical activation method, using a low-cost ball mill, is efficient in reducing the solid-state reaction temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号