首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7383篇
  免费   921篇
  国内免费   145篇
电工技术   50篇
综合类   345篇
化学工业   4747篇
金属工艺   122篇
机械仪表   102篇
建筑科学   132篇
矿业工程   31篇
能源动力   80篇
轻工业   930篇
水利工程   11篇
石油天然气   53篇
武器工业   18篇
无线电   391篇
一般工业技术   1305篇
冶金工业   67篇
原子能技术   22篇
自动化技术   43篇
  2024年   32篇
  2023年   134篇
  2022年   96篇
  2021年   303篇
  2020年   274篇
  2019年   261篇
  2018年   309篇
  2017年   294篇
  2016年   297篇
  2015年   335篇
  2014年   349篇
  2013年   525篇
  2012年   454篇
  2011年   447篇
  2010年   359篇
  2009年   397篇
  2008年   328篇
  2007年   408篇
  2006年   484篇
  2005年   354篇
  2004年   352篇
  2003年   311篇
  2002年   250篇
  2001年   184篇
  2000年   164篇
  1999年   119篇
  1998年   128篇
  1997年   91篇
  1996年   64篇
  1995年   52篇
  1994年   56篇
  1993年   43篇
  1992年   43篇
  1991年   53篇
  1990年   31篇
  1989年   30篇
  1988年   9篇
  1987年   10篇
  1986年   3篇
  1985年   5篇
  1984年   6篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1965年   1篇
排序方式: 共有8449条查询结果,搜索用时 31 毫秒
1.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
2.
《Ceramics International》2021,47(21):29949-29959
High carbon footprint of cement production is the major drawback of plain cement concrete resulting in environmental pollution. Geopolymer composites paste can be effectively used as an alternative to Portland cement in the construction industry for a sustainable environment. The demand for high-performance composites and sustainable construction is increasing day by day. Therefore, the present experimental program has endeavored to investigate the mechanical performance of basalt fiber-reinforced fly ash-based geopolymer pastes with various contents of nano CaCO3. The content of basalt fibers was fixed at 2% by weight for all specimens while the studied contents of nano CaCO3 were 0%, 1%, 2%, and 3%, respectively. The compressive strength, compressive stress-strain response, flexural strength, bending stress-strain response, elastic modulus, toughness modulus, toughness indices, fracture toughness, impact strength, hardness, and microstructural analysis of all four geopolymer composite pastes with varying contents of nano CaCO3 using scanning electron microscopy (SEM) were evaluated. The results revealed that the use of 3% nano CaCO3 in basalt fiber-reinforced geopolymer paste presented the highest values of compressive strength and hardness while the use of 2% nano CaCO3 showed the highest values of flexural strength, impact strength, and fracture toughness of composite paste. The SEM results indicated that the addition of nano CaCO3 improved the microstructure and provided a denser geopolymer paste by refining the interfacial zones and accelerating the geopolymerization reaction.  相似文献   
3.
Aromatic and functional polymers with processibility derived from biobased starting materials are prerequisite considering sustainable society. Poly(2,5-benzimidazole)s are rigid-rod polymers to show ultrahigh thermal stability such as flame retardance, while usually suffer from poor solubility. Here, poly(benzimidazole-co-amide)s are synthesized from two biobased monomers, 3,4-diaminobenzoic acid and a semirigid comonomer, 4-aminohydrocinnamic acid. The copolymers with an amide composition of 80 mol% and higher are soluble in widely used polar solvents to fabricate the films keeping high flame retardance, which is comparable with popular high-performance polymers such as aromatic polyimides, polyetheretherketone, polyphenylene sulfide, etc.  相似文献   
4.
A method for simultaneous measurement of the thickness and density for Glass Fiber-Reinforced Polymer (GFRP) laminate plates with ultrasonic waves in C-Scan mode is presented in the form of maps. The method uses three different signals in immersion pulse-echo C-Scan mode. The maps obtained based on the density show the heterogeneity of the material at high resolution at the pixel level (1 × 1 mm2) and therefore they represent an efficient tool to assess and evaluate the damage of the composite structures after manufacturing and after an applied mechanical loading.  相似文献   
5.
Thermally conductive polymers offer new possibilities for the heat dissipation in electric and electronic components, for example, by a three‐dimensional shaping of the heat sinks. To face safety regulations, improved fire performance of those components is required. In contrast to unfilled polymers, those materials exhibit an entirely different thermal behavior. To investigate the flammability, a phosphorus flame retardant was incorporated into thermally conductive composites of polyamide 6 and hexagonal boron nitride. The flame retardant decreased the thermal conductivity only slightly. However, the burning behavior changed significantly, due to a different heat propagation, which was investigated using a thermographic camera. An optimum content of hexagonal boron nitride for a sufficient thermal conductivity and fire performance was found between 20 and 30 vol%. The improvement of the fire performance was due to a faster heat release out of the pyrolysis zone and an earlier decomposition of the flame retardant. For higher contents of hexagonal boron nitride, the heat was spread faster within the part, promoting an earlier ignition and increasing the decomposition rate of the flame retardant.  相似文献   
6.
Nitrile rubber (NBR) blends with excellent performance have always been a hot research topic in petroleum field. Due to the excellent performance and compatibility of polyamide 6 (PA6), it provides an opportunity for the preparation of high-performance NBR/PA6 blends. In this article, NBR/PA6 blends were prepared by the three-step molding process. Experimentally, it was found that PA6 has a prominent reinforcement effect in NBR matrix. The variation of this mechanical property was investigated from different aspects of the crystal structure, crystallinities, phase morphology, and so on. It can be cleared that the formation of fibrous structure of PA6 phase is the main factor for reinforcement of the polymer blends. Meanwhile, the formation mechanism of the special phase structure induced by the three-step process is deeply expounded and its structural evolution schematic is established. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47472.  相似文献   
7.
In this article, the silver-plated polyamide fabrics (SPPAFs) with high electroconductibility and shielding effectiveness were fabricated by using in situ reduction of polydopamine and chemical silvering. The effects of SPPAFs dopamine (C8H11O2N) and silver nitrate (AgNO3) concentration on surface resistivity and electromagnetic interference shielding effectiveness were studied. The results showed that the surface resistivity of SPPAFs can reach a minimum value of 0.06 ± 0.014 Ω cm−1, when C8H11O2N concentration is 4 g L−1 and the AgNO3 concentration is 120 g L−1. The shielding effectiveness of SPPAFs in the wide frequency range of 10–3000 MHz increases with the increase in the concentration of AgNO3, and increases first and stabilizes afterward with increasing C8H11O2N concentration. When the concentration of C8H11O2N and AgNO3 is 3 and 120 g L−1, respectively, mean shielding effectiveness values in the low-, medium-, and high-frequency bands are 71.3, 73.8, and 76.1 dB, respectively. Moreover, the mean shielding effectiveness values is 83.79 dB in the frequency range of 1.2–2.3 GHz. The dominant shielding mechanism of SPPAFs is the reflected electromagnetic waves and the absorption shielding effectiveness is less than 2 dB. The average electromagnetic shielding values of SPPAFs are above 67 dB after 16 weeks of storage, when C8H11O2N concentration is 4 g L−1 and the AgNO3 concentration is 80 and 100 g L−1. The prepared SPPAFs show promising applications in military textiles and smart wearable clothing. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48227.  相似文献   
8.
《Ceramics International》2021,47(22):31268-31276
The relationship between the tensile strength of corroded domestic second-generation (2ed-gen) SiC fibers at various temperatures for 500 h in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt and the typical microstructure was studied. Weibull theory was used to analyze the critical defects that caused the tensile fracture, and the microstructure of fibers before and after corrosion was characterized. It is concluded that the decrease of tensile strength after corrosion at 800 °C is caused by the surface injury of fibers, which led to the shift of critical defects from the internal defects of virgin fibers to surface defects. Moreover, corrosion at higher temperature accelerates the corrosion process and dissolve the surface O-contained layer thoroughly. This shifts the critical defects back to the internal defects and will be helpful for the recovery of tensile strength of corroded fibers at the higher temperature.  相似文献   
9.
10.
Thermal and optical properties of copolymers of 1‐adamantyl methacrylate (AdMA) and styrene (St) prepared by free radical polymerization in the bulk are investigated. The copolymer forms an azeotrope when the composition is AdMA/St = 55/45 mol%. The glass transition temperature and decomposition temperature of the azeotropic copolymer are 170 and ca 340 °C, respectively. The refractive index increases nonlinearly with St content from 1.522 to 1.591. The light scattering loss at 633 nm is 28.1 dB km?1, which is less than half of that of polystyrene. The total optical loss including molecular vibrational absorption, which is evaluated using a copolymer‐based optical fiber, is 292–645 dB km?1 at 500–700 nm. These values correspond to transmittances of 86–93% for a 1 m optical path length. © 2014 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号