首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19428篇
  免费   1372篇
  国内免费   642篇
电工技术   495篇
综合类   1077篇
化学工业   8340篇
金属工艺   1339篇
机械仪表   612篇
建筑科学   579篇
矿业工程   572篇
能源动力   395篇
轻工业   2404篇
水利工程   161篇
石油天然气   948篇
武器工业   70篇
无线电   511篇
一般工业技术   2508篇
冶金工业   873篇
原子能技术   132篇
自动化技术   426篇
  2024年   114篇
  2023年   317篇
  2022年   575篇
  2021年   637篇
  2020年   550篇
  2019年   448篇
  2018年   493篇
  2017年   560篇
  2016年   540篇
  2015年   587篇
  2014年   887篇
  2013年   1101篇
  2012年   1313篇
  2011年   1459篇
  2010年   1095篇
  2009年   1175篇
  2008年   941篇
  2007年   1351篇
  2006年   1223篇
  2005年   1098篇
  2004年   940篇
  2003年   766篇
  2002年   617篇
  2001年   535篇
  2000年   426篇
  1999年   378篇
  1998年   295篇
  1997年   251篇
  1996年   162篇
  1995年   138篇
  1994年   97篇
  1993年   77篇
  1992年   78篇
  1991年   55篇
  1990年   35篇
  1989年   22篇
  1988年   19篇
  1987年   9篇
  1986年   15篇
  1985年   7篇
  1984年   6篇
  1983年   9篇
  1982年   9篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1975年   2篇
  1974年   5篇
  1955年   1篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Hexagonal boron nitride (h-BN) as a layered inorganic nonmetallic material has been widely used. Hydrogen peroxide (H2O2) modification can trigger exfoliation and afford abundant B–OH active sites at edge of h-BN, which can enhance methane activation ability. Introducing tungsten oxide (WO3) to h-BN produces a similar effect, because doping WO3 into h-BN resulted in electron transfer to N, inducing fracture of B–N bond, resulting in N vacancy (triboron center), exposing more B sites and promoting the generation of B–OH. Significantly, the introduction of WO3 on the modified h-BN dramatically increased the concentration of B–OH compared with the unmodified h-BN, because H2O2 modification weakened B–N bond. By means of XRD, TEM, XPS,EPR, FT-IR, it is proved that the high concentration of B–OH active sites contributed to activating C–H bond, thus methane conversion and CO and H2 selectivity were significantly improved.  相似文献   
2.
《Ceramics International》2022,48(4):4401-4423
Nano-zirconia has been widely applied due to its excellent physical and chemical properties (e.g., high strength, corrosion resistance, oxygen ion conductivity). Existing preparation methods of nano-zirconia tend to require long reaction time, and the sizes of final particles are large with uneven distributions. Sub-/supercritical hydrothermal synthesis of nanoparticles is favored by researchers owing to controllable reaction process, uniform particle size distribution, good reproducibility, short reaction time, high conversion rate and harmlessness to environment. In this paper, the characteristics and mechanisms of dissolution, crystallization and growth of nano-zirconia during sub-/supercritical hydrothermal synthesis are systematically reviewed. The influences of process and material parameters on the size and purity of particles are analyzed. Then, the reaction mechanism and product phase transition mechanism during hydrothermal synthesis of zirconia are summarized to provide a theoretical reference for the oriented preparation. Finally, the improvement and commercialization of sub-/supercritical hydrothermal synthesis technology are evaluated, and the future research topics are proposed.  相似文献   
3.
The phosphorylation of serine 10 in histone 3 (p-S10H3) has recently been demonstrated to participate in spinal nociceptive processing. However, superficial dorsal horn (SDH) neurons involved in p-S10H3-mediated nociception have not been fully characterized. In the present work, we combined immunohistochemistry, in situ hybridization with the retrograde labeling of projection neurons to reveal the subset of dorsal horn neurons presenting an elevated level of p-S10H3 in response to noxious heat (60 °C), causing burn injury. Projection neurons only represented a small percentage (5%) of p-S10H3-positive cells, while the greater part of them belonged to excitatory SDH interneurons. The combined immunolabeling of p-S10H3 with markers of already established interneuronal classes of the SDH revealed that the largest subset of neurons with burn injury-induced p-S10H3 expression was dynorphin immunopositive in mice. Furthermore, the majority of p-S10H3-expressing dynorphinergic neurons proved to be excitatory, as they lacked Pax-2 and showed Lmx1b-immunopositivity. Thus, we showed that neurochemically heterogeneous SDH neurons exhibit the upregulation of p-S10H3 shortly after noxious heat-induced burn injury and consequential tissue damage, and that a dedicated subset of excitatory dynorphinergic neurons is likely a key player in the development of central sensitization via the p-S10H3 mediated pathway.  相似文献   
4.
《Ceramics International》2022,48(4):5154-5161
An investigation was made into the electrochemical, structural and biological properties of self-organized amorphous and anatase/rutile titanium dioxide (TiO2) nanotubes deposited on Ti–35Nb–4Zr alloy through anodization-induced surface modification. The surface of as-anodized and heat-treated TiO2 nanotubes was analyzed by field emission scanning electron microscopy (FE-SEM), revealing morphological parameters such as tube diameter, wall thickness and cross-sectional length. Glancing angle X-ray diffraction (GAXRD) was employed to identify the structural phases of titanium dioxide, while atomic force microscopy (AFM) was used to measure surface roughness associated with cell interaction properties. The electrochemical stability of TiO2 was examined by electrochemical impedance spectroscopy (EIS) and the results obtained were correlated with the microstructural characterization. The in vitro bioactivity of as-anodized and crystallized TiO2 nanotubes was also analyzed as a function of the presence of different TiO2 polymorphic phases. The results indicated that anatase TiO2 showed higher surface corrosion resistance and greater cell viability than amorphous TiO2, confirming that TiO2 nanotube crystallization plays an important role in the material's electrochemical behavior and biocompatibility.  相似文献   
5.
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.  相似文献   
6.
By leveraging the secret data coding using the remainder storage based exploiting modification direction (RSBEMD), and the pixel change operation recording based on multi-segment left and right histogram shifting, a novel reversible data hiding (RHD) scheme is proposed in this paper. The secret data are first encoded by some specific pixel change operations to the pixels in groups. After that, multi-segment left and right histogram shifting based on threshold manipulation is implemented for recording the pixel change operations. Furthermore, a multiple embedding policy based on chess board prediction (CBP) and threshold manipulation is put forward, and the threshold can be adjusted to achieve adaptive data hiding. Experimental results and analysis show that it is reversible and can achieve good performance in capacity and imperceptibility compared with the existing methods.  相似文献   
7.
Although many colloidal assembling systems have been reported, most systems suffer from severe aggregation under high solid concentrations, which can often be observed in typical hetero-aggregation system. In this study, we created a hetero-assembly system using concentrated (~50 vol%) suspensions by mixing large SiO2 particles modified with polyacrylic acid partially complexed with oleylamine (PAA-OAm) and small SiO2 particles modified with polyethyleneimine partially complexed with oleic acid (PEI-OA) in a non-aqueous solvent. We demonstrated that hetero-assembly is driven by the interactions between the uncomplexed carboxyl/amine groups of the PAA/PEI present on the particles, while severe aggregation is simultaneously prevented by the steric repulsions of the aliphatic oleyl chains. Comparison of the cross sections of the in-situ solidified hetero-assembled suspensions with those of ideally assembled structures which were reproduced by a simulation considering the statistical distribution of particles strongly supported successful particle assembling via the proposed approach. The results revealed that the OA content in the PEI-OA complex was the dominant factor that controlled the dispersion and assembling state of the binary particles. The significance of this study is that our findings will provide a class of colloidal dispersion state which binary particles were assembled in a high solid content suspension without forming strong aggregates.  相似文献   
8.
Herein, we propose a novel method to enhance the photoreactivity of an MOF catalyst by grafting isocyanate bonds ( NCO) and sulfhydryl-complexed copper ( SCu) onto ZIF-8 (NIF-SCu). The grafting process intercalated interlayer bands between the conduction and valence bands of ZIF-8, thereby providing a “ladder” for facile electron transition. The extreme improvement in the photoreactivity of NIF-SCu could be attributed to the enhancement in light responses in the range of 350–450 nm by  NCO groups and the widening of the visible light range of the MOF by  SCu groups. The formation of staggered energy levels in NIF-SCu could also narrow the band gap, lower the resistance, and facilitate the transfer of photogenerated carriers, thereby generating electrons with strong reduction potential in the  SCu conduction band. This study provides a new strategy for improving or even endowing the photoactivity of environmental functional materials with wide bandgaps.  相似文献   
9.
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the “canonical” one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.  相似文献   
10.
Structure modification has been found to tune significantly the transparent-conducting performance, especially mobility and conductivity of hydrogenated Ga-doped ZnO (HGZO) films. The strong correlation between film thickness and mobility of the films is revealed. The mobility increases quickly with increasing the thickness from 350 to 900 nm, and then tends to be saturated at further thicknesses. A higher mobility than 50 cm2/Vs can be achieved, which is an extra-high value for polycrystalline ZnO films deposited by using the sputtering technique. The thickness-dependent mobility originates from scatterings on grain boundaries and dislocation-induced defects controlled by thin-film growth. Based on the Volmer-Weber model, an expansion model is built up to describe the thickness-dependent crystal growth of the HGZO films, especially at the thick films. As a result, the 800 nm-thick HGZO film obtains the highest performance with high mobility of 51.5 cm2/Vs, low resistivity of 5.3 × 10?4 Ωcm, and good transmittance of 83.3 %.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号