首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学工业   2篇
  2024年   1篇
  2012年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Proton-exchange membrane fuel cells have emerged as a promising emission free technology to fulfill the existing power requirements of the 21st century. Nafion® is the most widely accepted and commercialized membrane to date and possesses excellent electrochemical properties below 80 °C, under highly humidified conditions. However, a decrease in the proton conductivity of Nafion® above 80 °C and lower humidity along with high membrane cost has prompted the development of new membranes and techniques. Addition of inorganic fillers, especially silicate-based nanomaterials, to the polymer membrane was utilized to partially overcome the aforementioned limitations. This is because of the lower cost, easy availability, high hydrophilicity and higher thermal stability of the inorganic silicates. Addition of silicates to the polymer membrane has also improved the mechanical, thermal and barrier properties, along with water uptake of the composite membranes, resulting in superior performance at higher temperature compared to that of the virgin membrane. However, the degrees of dispersion and interaction between the organic polymer and inorganic silicates play vital roles in improving the key properties of the membranes. Hence, different techniques and solvent media were used to improve the degrees of nanofiller dispersion and the physico-chemical properties of the membranes. This review focuses mainly on the techniques of silicate-based nanocomposite fabrication and the resulting impact on the membrane properties.  相似文献   
2.
    
Acrylamide polymers are typically used in industrial and healthcare sectors as thickening agents; however, their thickening capabilities rely mainly in their molecular mass. A versatile and simple strategy to improve their performance is the copolymerization with specific monomers or their chemical modification with structures like dendritic or hyperbranched molecules. This study introduces a novel acrylamide-acrylic acid polymer grafted with minor proportions (≤4.0 wt%) of Boltorn H30, a hyperbranched polyester monomer. The incorporation of Boltorn H30 aims to exploit the hyperbranched architecture's impact on the viscosity and rheological behavior of polymer solutions. Polymers with 0.4 and 4.0 polyester wt% characterized by several analytical techniques displayed improved viscosity in aqueous solution compared against the parent poly(acrylamide-co-acrylic acid). Results revealed that while the molecular mass distribution changed between 20% and 94%, the thickening capabilities significantly improved with increments of 2.7 and 3.8 times compared to that of the original polymers. These findings demonstrate that even with a minimal incorporation of hyperbranched polyesters, the abundance of hydroxyl groups fosters extensive hydrogen bonding, resulting in enhanced viscosity properties of the polymer.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号