首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8012篇
  免费   523篇
  国内免费   438篇
电工技术   82篇
综合类   418篇
化学工业   1586篇
金属工艺   1462篇
机械仪表   751篇
建筑科学   101篇
矿业工程   338篇
能源动力   306篇
轻工业   530篇
水利工程   6篇
石油天然气   79篇
武器工业   47篇
无线电   983篇
一般工业技术   1684篇
冶金工业   325篇
原子能技术   143篇
自动化技术   132篇
  2024年   16篇
  2023年   112篇
  2022年   158篇
  2021年   148篇
  2020年   219篇
  2019年   250篇
  2018年   246篇
  2017年   290篇
  2016年   214篇
  2015年   237篇
  2014年   383篇
  2013年   353篇
  2012年   402篇
  2011年   615篇
  2010年   434篇
  2009年   478篇
  2008年   387篇
  2007年   495篇
  2006年   500篇
  2005年   440篇
  2004年   387篇
  2003年   332篇
  2002年   302篇
  2001年   272篇
  2000年   228篇
  1999年   204篇
  1998年   155篇
  1997年   156篇
  1996年   129篇
  1995年   129篇
  1994年   77篇
  1993年   79篇
  1992年   45篇
  1991年   28篇
  1990年   23篇
  1989年   16篇
  1988年   6篇
  1987年   5篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1951年   1篇
排序方式: 共有8973条查询结果,搜索用时 0 毫秒
1.
《Ceramics International》2022,48(9):11981-11987
Previous research have reported that B4C–TiB2 composites could be prepared by the reactive sintering of TiC–B powder mixtures. However, due to spontaneous oxidation of raw powders, using TiC–B powder mixtures with a B/TiC molar ratio of 6: 1 introduced an intermediate phase of C during the sintering process, which deteriorated the hardness of the composites. In this report, the effects of B excess on the phase composition, microstructure, and mechanical properties of B4C–TiB2 composites fabricated by reactive hot pressing TiC–B powder mixtures were investigated. XRD and Raman spectra confirmed that lattice expansion occurred in B-rich boron carbide and BxC–TiB2 (x > 4) composites were obtained. The increasing B content improved the hardness and fracture toughness but decreased the flexural strength of BxC–TiB2 (x > 4) composites. When the molar ratio of B/TiC increased from 6.6:1 to 7.8:1, the Vickers hardness and the fracture toughness of the composites were enhanced from 26.7 GPa and 4.53 MPa m1/2 to 30.4 GPa and 5.78 MPa m1/2, respectively. The improved hardness was attributed to the microstructural improvement, while the toughening mechanism was crack deflection, crack bridging and crack branching.  相似文献   
2.
《Ceramics International》2022,48(14):20000-20009
Zinc oxide (ZnO) offers a major disadvantage of asymmetry doping in terms of reliability, stability, and reproducibility of p-type doping, which is the main hindrance in realization of optoelectronic devices. The problem is even more complicated due to formation of various native defects in unintentionally doped n-type ZnO. The realization of p-type conductivity in doped ZnO requires an in-depth understanding of the formation of an effective shallow acceptor, as well as donor-acceptor compensation. Photophysical properties such as photoconductivity along with photoluminescence (PL) studies have unprecedentedly and effectively been utilized in this work to monitor the evolution of various in-gap defects. Phosphorus (P) doped ZnO thin films have been grown by RF magnetron sputtering under various Ar to O2 gas ratios to investigate the effect of O2 on the donor-acceptor compensation by comprehensive photoconductivity measurements supported by the PL studies. Initial elemental analyses indicate presence of abundant zinc vacancies (VZn) in O-rich ambience. The results predict that P sits in the zinc (Zn) site rather than the oxygen (O) site causing the formation of PZn–2VZn acceptor-like defects, which compensates the donor defects in P doped ZnO films. Photocurrent spectra uniquely reveal presence of more oxygen vacancies (VO) defects states in lower O2 flow, which gets compensated with an increase in the O2 flow. Successive photocurrent transients indicate probable presence of more VO in the films grown with lower O2 flow and more VZn in higher O2 flow. Overall the photosensitivity measurements clearly present that O-rich ambience expedites the formation of acceptor defects which are compensated, thereby lowering the dark current and enhancing the ultraviolet photosensitivity.  相似文献   
3.
《Ceramics International》2021,47(23):32969-32978
In this study, hydroxyapatite-based hydroxyapatite-wollastonite-boron nitride (HAp-Wo-BN) composite film was formed on the surface of Ti6Al4V by pulsed laser deposition (PLD). Based on a survey in scientific literature, it is presumed that this is the first time such a process is being undertaken. The wear and corrosion resistance of this film were analyzed comparatively in simulated body fluid (SBF) to simulate the human body environment. In the coating, HAp was used to form a bone-like layer, wollastonite was to enhance bone-tissue regeneration and BN was used for its bone-tissue healing and anti-bacterial properties. The results showed that the wear as well as the corrosion resistance of all samples after PLD treatment increased. Relatively the best wear resistance was achieved from boron nitride and wollastonite doped hydroxyapatite layers, where the best corrosion resistance was from the ones that consisted of only hydroxyapatite.  相似文献   
4.
Developing non-precious metal-based catalysts as the substitution of precious catalysts (Pt/C) in oxygen reduction reaction (ORR) is crucial for energy devices. Herein, a template and organic solvent-free method was adopted to synthesize Fe, B, and N doped nanoflake-like carbon materials (Fe/B/N–C) by pyrolysis of monoclinic ZIF-8 coated with iron precursors and boric acid. Benefiting from introducing B into Fe–N–C, the regulated electron cloud density of Fe-Nx sites enhance the charge transfer and promotes the ORR process. The as-synthesized Fe/B/N–C electrocatalyst shows excellent ORR activity of a half-wave potential (0.90 V vs 0.87 V of Pt/C), together with superior long-term stability (95.5% current density retention after 27 h) in alkaline media and is even comparable to the commercial Pt/C catalyst (with a half-wave potential of 0.74 V vs 0.82 V of Pt/C) in an acidic electrolyte. A Zn-air battery assembled with Fe/B/N–C as ORR catalyst delivers a higher open-circuit potential (1.47 V), specific capacity (759.9 mA h g?1Zn at 10 mA cm?2), peak power density (62 mW cm?2), as well as excellent durability (5 mA cm?2 for more than 160 h) compared to those with commercial Pt/C. This work provides an effective strategy to construct B doped Fe–N–C materials as nonprecious ORR catalyst. Theoretical calculations indicate that introduction of B could induce Fe-Nx species electronic configuration and is favorable for activation of OH1 intermediates to promote ORR process.  相似文献   
5.
Low-dimensional carbon nanostructures are ideal nanofillers to reinforce the mechanical performance of polymer nanocomposites due to their excellent mechanical properties. Through molecular dynamics simulations, the mechanical performance of poly(vinyl alchohol) (PVA) nanocomposites reinforced with a single-layer diamond – diamane is investigated. It is found the PVA/diamane exhibits similar interfacial strengths and pull-out characteristics with the PVA/bilayer-graphene counterpart. Specifically, when the nanofiller is fully embedded in the nanocomposite, it is unable to deform simultaneously with the PVA matrix due to the weak interfacial load transfer efficiency, thus the enhancement effect is not significant. In comparison, diamane can effectively promote the tensile properties of the nanocomposite when it has a laminated structure as it deforms simultaneously with the matrix. With this configuration, the interlayer sp3 bonds endows diamane with a much higher resistance under compression and shear tests, thus the nanocomposite can reach very high compressive and shear stress. Overall, enhancement on the mechanical interlocking at the interface as triggered by surface functionalization is only effective for the fully embedded nanofiller. This work provides a fundamental understanding of the mechanical properties of PVA nanocomposites reinforced by diamane, which can shed lights on the design and preparation of next generation high-performance nanocomposites.  相似文献   
6.
Borazine rings act as a pivotal part in siliconboroncarbonitride ceramics (SiBCN) for high-temperature stability and great resistance to crystallization. A detailed investigation of the ring formation mechanism will guide the design and synthesis of SiBCN to meet application requirements under extreme conditions. Boron trichloride (BCl3) and hexamethyldisilazane (HN(SiMe3)2) are common raw materials for the synthesis of precursors for SiBCN. In this paper, quantum chemical calculation was used to study the cyclization reaction mechanism between BCl3 and HN(SiMe3)2 to form trichloroborazine (TCBZ) at the MP2/6-31G (d,p) level of theory. We discussed the structure properties, reaction pathways, energy barriers, reaction rates, and other aspects in detail. The results show that BCl3 and HN(SiMe3)2 alternately participate in the reaction process, accompanied by the release of trimethylchlorosilane (TMCS), and that the entire reaction shows an absolute advantage in terms of energy. In the Step by step reaction, lower reaction barriers are formed due to the introduction of BCl3 with more heat released compared to that for the introduction of HN(SiMe3)2. The final single-molecule cyclization and TMCS elimination steps are found to be faster compared to all previous bimolecular reactions.  相似文献   
7.
Sulfured doped carbon electrocatalysts is synthesized from the waste biomass Sargassum spp. Two doping procedures are examined to determine which is better for Oxygen Reduction Reaction (ORR); one by doping biocarbon obtained from the pyrolysis of the biomass and the second through a process of in situ doping in autoclave. The electrocatalyst are obtained from pyrolysis of the sample at 700 °C, which is finally characterized as a metal free electrocatalyst for the ORR. The electrocatalyst are characterized by BET surface area analysis, Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and the electrochemical characterization is determined in 0.1 M KOH. The sample SSKPT-1 exhibits a promising electrocatalytic activity with an onset potential of 0.896 V vs RHE and a current density of 5 mA cm?2 (at 0.2 V vs. RHE) which could be partly attributed to its high BET surface area of 2755 m2 g?1.  相似文献   
8.
《Ceramics International》2020,46(3):2969-2978
Tin doped nanomagnetites, SnxFe3-xO4, were synthesized with various concentrations of Sn2+ ion (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) by co-precipitation method. XRD, VSM, TG-DTA, SEM-EDX and UV–Vis were used to characterize and study the structural, magnetic, thermal, and optical properties of SnxFe3-xO4 nanoparticles. XRD confirmed the presence of cubic structure and spinel phase of tin doped magnetites. The d-spacing, lattice parameter, density, crystallite size and cation distribution were derived from the XRD analysis. The M − H curves exhibited changes in saturation magnetization (Ms), coercive field (Hc), remanent magnetization (Mr) and susceptibility (χ), with increasing concentration of non-magnetic Sn2+ ions. Differential thermal analysis was used to study the thermal stability of SnxFe3-xO4 nanoparticles. The SEM images revealed the surface morphology of the nanoparticles and the EDX spectra showed an increase in the Sn content and a corresponding decrease in the Fe content for the tin doped samples. The optical bandgap was found to be centered at 3.9 eV for the synthesized materials. This systematic study may be the first comprehensive report on synthesis and characterization of tin doped magnetites.  相似文献   
9.
LDD方法在提高电路工作电压中的应用研究   总被引:1,自引:0,他引:1  
曾莹  王纪民 《微电子学》1997,27(1):37-42
研究了利用轻掺杂漏结构来制作高电源电压器件的工艺方法。分析了LDD结构参数对器件击穿特性的影响,并结合实验结果对N^-区的注入剂量,长度及引入的串联电阻进行了优化设计。  相似文献   
10.
预处理工艺对硬质合金与金刚石膜间粘结力的影响   总被引:1,自引:0,他引:1  
在两种经不同预处理的硬质合金YG8基底上,采用微波等离子体化学气相沉积法,在微波功率2kW,压强4.0kPa和6.5kPa,CH4和H2流量分别为1.6cm/s和100.0cm/s的条件下生长金刚石薄膜。利用X射线衍射检测了金刚石薄膜是否存在,用拉曼光谱分析了薄膜的质量,用金相显微镜观察了薄膜的洛氏硬度压痕,标定并比较了不同预处理工艺膜与基底的结合力。实验结果表明,不同的预处理方法对于粘结力的影响不大,最主要的因素是钴含量的多少。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号