首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学工业   6篇
能源动力   2篇
一般工业技术   1篇
  2022年   2篇
  2021年   3篇
  2018年   1篇
  2017年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有9条查询结果,搜索用时 0 毫秒
1
1.
2.
Non-covalent interactions responsible for molecular features and self-assembly in Naphthazarin C polymorph were investigated on the basis of diverse theoretical approaches: Density Functional Theory (DFT), Diffusion Quantum Monte Carlo (DQMC), Symmetry-Adapted Perturbation Theory (SAPT) and Car-Parrinello Molecular Dynamics (CPMD). The proton reaction paths in the intramolecular hydrogen bridges were studied. Two potential energy minima were found indicating that the proton transfer phenomena occur in the electronic ground state. Diffusion Quantum Monte Carlo (DQMC) and other levels of theory including Coupled Cluster (CC) employment enabled an accurate inspection of Potential Energy Surface (PES) and revealed the energy barrier for the proton transfer. The structure and reactivity evolution associated with the proton transfer were investigated using Harmonic Oscillator Model of Aromaticity - HOMA index, Fukui functions and Atoms In Molecules (AIM) theory. The energy partitioning in the studied dimers was carried out based on Symmetry-Adapted Perturbation Theory (SAPT) indicating that dispersive forces are dominant in the structure stabilization. The CPMD simulations were performed at 60 K and 300 K in vacuo and in the crystalline phase. The temperature influence on the bridged protons dynamics was studied and showed that the proton transfer phenomena were not observed at 60 K, but the frequent events were noticed at 300 K in both studied phases. The spectroscopic signatures derived from the CPMD were computed using Fourier transformation of autocorrelation function of atomic velocity for the whole molecule and bridged protons. The computed gas-phase IR spectra showed two regions with OH absorption that covers frequencies from 2500 cm1 to 2800 cm1 at 60 K and from 2350 cm1 to 3250 cm1 at 300 K for both bridged protons. In comparison, the solid state computed IR spectra revealed the environmental influence on the vibrational features. For each of them absorption regions were found between 2700–3100 cm1 and 2400–2850 cm1 at 60 K and 2300–3300 cm1 and 2300–3200 cm1 at 300 K respectively. Therefore, the CPMD study results indicated that there is a cooperation of intramolecular hydrogen bonds in Naphthazarin molecule.  相似文献   
3.
As the most popular high-energy explosives, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.0.0] dodecane (Simplified as HNIW or CL20) attracts many attentions for improving its detonation appearance in the application. Here we introduce hydrogen-storage compounds into explosives to estimate the possible improved detonation performances by Car-Parrinello molecular dynamics (CPMD) simulation, where we construct lithium amidoborane (LAB) doped CL20 as the initial structure. Almost all the interactions between hydrogen and CL20 appear exothermic properties, which indicate LAB increases the enthalpies of detonation. The results suggest explosive mixed with hydrogen-storage material is possibly a new field of energetic compound.  相似文献   
4.
Multiple-cation compounds always show more desirable controllability than that of mono-metallic compounds in the field of the hydrogen-storage materials. As in the ammine metallic borohydrides (AMB), Li and Mg appears similar chemical properties, but they show different appearances in preventing the impurities in the hydrogen releasing process. We applied Car–Parrinello molecular dynamic (CPMD) method to investigate the dehydrogenation pathway for LiMg(BH4)3(NH3)2 (AMLB) on the basis of our previous study of Mg(BH4)2(NH3)2 (AMgB) and LiBH4NH3 (ALB). Interestingly, the purity of hydrogen gradually improves from ALB to AMgB to AMLB caused by the effects of the corresponding mixed metals. Furthermore, the two metals in AMLB are in close cooperation to control the motion of [NH3] and [BH4] groups, which suppress almost all the impurities and show enhanced properties in the decomposition. From our results, the improved dehydrogenation performance should depend on the large polarization of the centre metal(s). Furthermore, the purity of the hydrogen is depending on the quantities of the free hydrogen ions.  相似文献   
5.
The O-H...N and O-H...O hydrogen bonds were investigated in 10-hydroxybenzo[h]quinoline (HBQ) and benzo[h]quinoline-2-methylresorcinol complex in vacuo, solvent and crystalline phases. The chosen systems contain analogous donor and acceptor moieties but differently coupled (intra- versus intermolecularly). Car–Parrinello molecular dynamics (CPMD) was employed to shed light onto principle components of interactions responsible for the self-assembly. It was applied to study the dynamics of the hydrogen bonds and vibrational features as well as to provide initial geometries for incorporation of quantum effects and electronic structure studies. The vibrational features were revealed using Fourier transformation of the autocorrelation function of atomic velocity and by inclusion of nuclear quantum effects on the O-H stretching solving vibrational Schrödinger equation a posteriori. The potential of mean force (Pmf) was computed for the whole trajectory to derive the probability density distribution and for the O-H stretching mode from the proton vibrational eigenfunctions and eigenvalues incorporating statistical sampling and nuclear quantum effects. The electronic structure changes of the benzo[h]quinoline-2-methylresorcinol dimer and trimers were studied based on Constrained Density Functional Theory (CDFT) whereas the Electron Localization Function (ELF) method was applied for all systems. It was found that the bridged proton is localized on the donor side in both investigated systems in vacuo. The crystalline phase simulations indicated bridged proton-sharing and transfer events in HBQ. These effects are even more pronounced when nuclear quantization is taken into account, and the quantized Pmf allows the proton to sample the acceptor area more efficiently. The CDFT indicated the charge depletion at the bridged proton for the analyzed dimer and trimers in solvent. The ELF analysis showed the presence of the isolated proton (a signature of the strongest hydrogen bonds) only in some parts of the HBQ crystal simulation. The collected data underline the importance of the intramolecular coupling between the donor and acceptor moieties.  相似文献   
6.
Carbon nanotubes (CNTs), due to their exceptional magnetic, electrical and mechanical properties, are promising candidates for several technical applications ranging from nanoelectronic devices to composites. Young’s modulus holds the special status in material properties and micro/nano-electromechanical systems (MEMS/NEMS) design. The excellently regular structures of CNTs facilitate accurate simulation of CNTs’ behavior by applying a variety of theoretical methods. Here, three representative numerical methods, i.e., Car–Parrinello molecular dynamics (CPMD), density functional theory (DFT) and molecular dynamics (MD), were applied to calculate Young’s modulus of single-walled carbon nanotube (SWCNT) with chirality (3,3). The comparative studies showed that the most accurate result is offered by time consuming DFT simulation. MD simulation produced a less accurate result due to neglecting electronic motions. Compared to the two preceding methods the best performance, with a balance between efficiency and precision, was deduced by CPMD.  相似文献   
7.
Substitution is well-known to modulate the physico-chemical properties of molecules. In this study, a combined, multifactor approach was employed to determine a plethora of substitution patterns using –Br and –O-H in 1,4-naphthoquinone and its derivatives. On the basis of classical Density Functional Theory (DFT), 25 models divided into three groups were developed. The first group contains 1,4-naphthoquinone and its derivatives substituted only by –Br. The second group consists of compounds substituted by –Br and one –O-H group. As a result of the substitution, an intramolecular hydrogen bond was formed. The third group also contains –Br as a substituent, but two –O-H groups were introduced and two intramolecular hydrogen bonds were established. The simulations were performed at the ωB97XD/6-311++G(2d,2p) level of theory. The presence of substituents influenced the electronic structure of the parent compound and its derivatives by inductive effects, but it also affected the geometry of the 2 and 3 groups, due to the intramolecular hydrogen bonding and the formation of a quasi-ring/rings. The static DFT models were applied to investigate the aromaticity changes in the fused rings based on the Harmonic Oscillator Model of Aromaticity (HOMA). The OH stretching was detected for the compounds from groups 2 and 3 and further used to find correlations with energetic parameters. The evolution of the electronic structure was analyzed using Hirshfeld atomic charges and the Substituent Active Region (cSAR) parameter. The proton reaction path was investigated to provide information on the modulation of hydrogen bridge properties by diverse substitution positions on the donor and acceptor sides. Subsequently, Car–Parrinello Molecular Dynamics (CPMD) was carried out in the double-bridged systems (group 3) to assess the cooperative effects in double –O-H-substituted systems. It was determined that the –O-H influence on the core of the molecule is more significant than that of –Br, but the latter has a major impact on the bridge dynamics. The competitive or synergic effect of two –Br substituents was found to depend on the coupling between the intramolecular hydrogen bridges. Thus, the novel mechanism of a secondary (cooperative) substituent effect was established in the double-bridged systems via DFT and CPMD results comparison, consisting of a mediation of the bromine substitutions’ influence by the cooperative proton transfer events in the hydrogen bridges.  相似文献   
8.
It is postulated that the overexpression of Carbonic Anhydrase isozyme IX in some cancers contributes to the acidification of the extracellular matrix. It was proved that this promotes the growth and metastasis of the tumor. These observations have made Carbonic Anhydrase IX an attractive drug target. In the light of the findings and importance of the glycoprotein in the cancer treatment, we have employed quantum–chemical approaches to study non-covalent interactions in the binding pocket. As a ligand, the acetazolamide (AZM) molecule was chosen, being known as a potential inhibitor exhibiting anticancer properties. First-Principles Molecular Dynamics was performed to study the chalcogen and other non-covalent interactions in the AZM ligand and its complexes with amino acids forming the binding site. Based on Density Functional Theory (DFT) and post-Hartree–Fock methods, the metric and electronic structure parameters were described. The Non-Covalent Interaction (NCI) index and Atoms in Molecules (AIM) methods were applied for qualitative/quantitative analyses of the non-covalent interactions. Finally, the AZM–binding pocket interaction energy decomposition was carried out. Chalcogen bonding in the AZM molecule is an important factor stabilizing the preferred conformation. Free energy mapping via metadynamics and Path Integral molecular dynamics confirmed the significance of the chalcogen bond in structuring the conformational flexibility of the systems. The developed models are useful in the design of new inhibitors with desired pharmacological properties.  相似文献   
9.
碱金属中的钾离子与水分子形成的K+-H2O团簇在生物体钾离子通道的选择中起到了重要的作用。本文用Car-Parrinello动力学方法(CPMD)和AIM理论对团簇中钾离子与水分子形成的键进行研究。结果表明钾离子与一、二两个水合层中的水分子均发生作用。在300K时,第一水合层钾离子的配位数为5.10,键能为11.99 kcal/mol。因为K+-H2O之间形成的较强的键,所以第一水合层中离子与水的结合在250K~350K时很稳定。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号