首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
综合类   3篇
化学工业   14篇
能源动力   21篇
无线电   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   6篇
  2018年   5篇
  2016年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2004年   1篇
  2002年   2篇
  1996年   1篇
排序方式: 共有39条查询结果,搜索用时 31 毫秒
1.
The study firstly discusses the pyrolysis characteristics and kinetics by thermogravimetric analysis (TGA), and then investigates the pyrolysis of lignite and co-pyrolysis with plastic (polyethylene or polypropylene) in tube furnace. Meanwhile, the research focuses on the co-pyrolysis products under different mixing ratios as well as pyrolysis products at different testing temperatures and heating rates. The results show that higher final testing temperature and lower heating rate contribute to bond fission in lignite pyrolysis, resulting in less char product. In co-pyrolysis, lignite acts as hydrogen donor, and the yields of char and water rise with increasing amount of plastic in the mixture, while the yields of gas and tar decrease; and a little admixture of plastic will promote the production of gas and tar. Kinetic studies indicate that in temperature range of 530–600 °C, activation energies of lignite are higher than those of lignite/plastic blends, and as plastic mass ratio increases from 0% to 10%, samples need less energy to be decomposed during co-pyrolysis.  相似文献   
2.
Co-pyrolysis of pine cone with synthetic polymers   总被引:1,自引:0,他引:1  
Mihai Brebu  Cornelia Vasile 《Fuel》2010,89(8):1911-1918
Biomass from pine cone (Pinus pinea L.) was co-pyrolyzed with synthetic polymers (PE, PP and PS) in order to investigate the effect of biomass and plastic nature on the product yields and quality of pyrolysis oils and chars. The pyrolysis temperature was of 500 °C and it was selected based on results from thermogravimetric analysis of the studied samples. Co-pyrolysis products namely gases, aqueous and tar fraction coming from biomass, oils from synthetic polymers and residual char were collected and analyzed. Due to the synergistic effect in the pyrolysis of the biomass/polymer mixtures, higher amounts of liquid products were obtained compared to theoretical ones. To investigate the effect of biomass content on the co-pyrolysis, the co-pyrolysis of pure cellulose as model natural polymer for biomass with polymer mixture was also carried out. In the presence of cellulose, degradation reaction leading to more gas formation and less char yield was more advanced than in the case of co-pyrolysis with pine cone. Co-pyrolysis gave polar oxygenated compounds distributed between tar and aqueous phase and hydrocarbon oils with composition depending on the type of synthetic polyolefin. Co-pyrolysis chars had higher calorific values compared to pyrolysis of biomass alone.  相似文献   
3.
An experimental study on co-pyrolysis of bituminous coal and biomass was performed in a pressured fluidized bed reactor. The blend ratio of biomass in the mixture was varied between 0 and 100 wt%, and the temperature was over a range of 550–650 °C under 1.0 MPa pressure with different atmospheres. On the basis of the individual pyrolysis behavior of bituminous coal and biomass, the influences of the biomass blending ratio, temperature, pressure and atmosphere on the product distribution were investigated. The results indicated that there existed a synergetic effect in the co-pyrolysis of bituminous coal and biomass in this pressured fluidized bed reactor, especially when the condition of bituminous coal and biomass blend ratio of 70:30(w/w), 600 °C, and 0.3 MPa was applied. The addition of biomass influenced the tar and char yields and gas and tar composition during co-pyrolysis. The tar yields were higher than the calculated values from individual pyrolysis of each fuel, and consequently the char yields were lower.The experimental results showed that the composition of the gaseous products was not in accordance with those of their individual fuel. The improvement of composition in tar also indicated synergistic effect in the co-pyrolysis.  相似文献   
4.
Investigations into the co-pyrolytic behaviours of different plastics (high density polyethylene, low density polyethylene and polypropylene), low volatile coal and their blends with the addition of the plastic of 5 wt.% have been conducted using a thermogravimetric analyzer. The results indicated that plastic was decomposed in the temperature range 438–521 °C, while the thermal degradation temperature of coal was 174–710 °C. The overlapping degradation temperature interval between coal and plastic was favorable for hydrogen transfer from plastic to coal. The difference of weight loss (?W) between experimental and theoretical ones, calculated as an algebraic sum of those from each separated component, was 2.0–2.7% at 550–650 °C. These experimental results indicated a synergistic effect during plastic and coal co-pyrolysis at the high temperature region. In addition, a kinetic analysis was performed to fit thermogavimetric data, the estimated kinetic parameters (activation energies and pre-exponential factors) for coal, plastic and their blends, were found to be in the range of 35.7–572.8 kJ/mol and 27–1.7 × 1038 min− 1, respectively.  相似文献   
5.
The main objective of this work is to investigate the syngas production from petrochemical sludge (PS) and sawdust (SD) co-pyrolysis. In this study, the pyrolysis experiments of PS, SD and their blends were carried out in TG-MS analyzer and fixed bed reactor. The effects of pyrolysis temperature and interactions between PS and SD on gas evolution behavior, products distribution and gas compositions were investigated. The PS pyrolysis result showed high temperature favored the gas production and there was a distinct increase in gas yield when temperature exceeded 700 °C. The Fe3O4 in solid was reduced by carbon with the generation of CO and CO2, leading to the increase of gas yield. During the co-pyrolysis process, significant interactions between PS and SD were observed. SD addition promoted the increase of gas yield, as well as the generation of H2 and CO. In addition, the activation energy during co-pyrolysis process was reduced due to the interaction. The strongest accelerative effect on gas yield appeared at 60 wt% SD, under which the gas yield was 39.59 wt%, H2+CO content was 61.34 vol%, LHV was 13.39 MJ/Nm3. It was concluded that SD addition was conductive to syngas production from PS pyrolysis.  相似文献   
6.
Pyrolytic vapor generated over different temperature ranges can be correlated with breaking of different groups of covalent bonds. In the present study, pyrolysis of oil shale and alkaline lignin was studied by thermogravimetry coupled with fourier transform infrared spectroscopy (TG-FTIR) analysis. As the dominant fraction of pyrolytic gaseous products, methane (CH4) was selected as an entry point to track the breakage of main covalent bonds during pyrolysis of oil shale and alkaline lignin. Through applying the deconvolution method, overall CH4 evolution and differential thermogravimetric (DTG) curves of pyrolysis of oil shale and alkaline lignin could be fitted by a series of sub-curves assigned to different groups of covalent bonds. This indicated that the mass loss of oil shale was mainly caused by the fracture of three groups of covalent bonds. In contrast, mass loss of alkaline lignin was mainly caused by the fracture of two groups of covalent bonds. Furthermore, detailed influence of co-pyrolysis on the cleavage of covalent bonds was also analyzed for different blending ratios of oil shale and alkaline lignin. The results revealed that co-pyrolysis of alkaline lignin and oil shale led to the enhancement in CH4 yield by promoting the breakage of linkages. It was also found that among three groups of covalent bonds, the third was most significantly influenced due to reduction in its bond energy.  相似文献   
7.
Samples of five types of coal and oil shale from the Daqing region have been subjected to co-pyrolysis in different blending ratios with thermo-gravimetry (TG).given a heating rate of 30 ℃/min to a fin...  相似文献   
8.
Levent Ballice 《Fuel》2002,81(9):1233-1240
Temperature programmed co-pyrolysis of low-density polyethylene (LDPE) with polypropylene (PP) was investigated. The aim of this research was to determine the volatile product distribution and product evolution rate of co-processing of LDPE with PP. A series co-pyrolysis operation was performed with LDPE and PP using a 1:3, 1:1, 3:1 total carbon ratio of LDPE to PP. A fixed bed reactor was used to pyrolyse small sample of LDPE and PP mixture under an inert gas flow (argon). A special sampling technique was used for collecting organic products eluted from the reactor at different temperature and time intervals. The co-pyrolysis products were analyzed by capillary gas chromatography and the total product evolution rate was investigated as a function of temperature and time. n-paraffins and 1-olefins in aliphatic fraction of co-pyrolysis products were classified as a carbon number. In addition, the recovery of total organic carbon as an organic volatile product was determined. The assessments were based on incorporating the results on temperature-programmed pyrolysis of LDPE and PP. The effect of co-processing of LDPE with PP was determined by calculating the difference between the experimental and the hypothetical mean value of conversion of total organic carbon into volatile products. Conversion into volatile hydrocarbons was found to be higher, with the increasing PP ratio in the co-pyrolysis operation.  相似文献   
9.
Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction mechanisms. Considering the high viscosity and low thermal conductivity of molten plastics, a falling film pyrolysis reactor was selected to explore the rapid co-pyrolysis process of typical plastic components (PP, PE and PS). The oil and gas yields and the compositions of pyrolysis products of the three components under different ratios at pyrolysis temperatures were analyzed to explore the co-pyrolysis characteristics of PP, PE, and PS. The study is of great significance to the recycling of waste plastics.  相似文献   
10.
To reasonably utilize the coal direct liquefaction residue (DLR), contrasting research on the co-pyrolysis between different low-rank coals and DLR was investigated using a TGA coupled with an FT-IR spectrophotometer and a fixed-bed reactor. GC-MS, FTIR, and XRD were used to explore the reaction mechanisms of the various co-pyrolysis processes. Based on the TGA results, it was confirmed that the tetrahydrofuran insoluble fraction of DLR helped to catalyze the conversion reaction of lignite. Also, the addition of DLR improved the yield of tar in the fixed-bed, with altering the composition of the tar. Moreover, a kinetic analysis during the co-pyrolysis was conducted using a distributed activation energy model. The co-pyrolysis reactions showed an approximate double-Gaussian distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号